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Abstract. With the widespread adoption of mobile devices, inertial measurement units
(IMUs) have emerged as an appealing solution for human pose estimation. Unlike traditional
motion capture systems, IMUs, found in common consumer devices including smartphones,
smartwatches, and earbuds, enable cost-effective and on-the-go pose tracking. They work
across numerous application domains, including fitness monitoring, mobile human-
computer interaction, context-aware virtual assistance, and rehabilitation. Nevertheless, the
noise in low-cost IMU data, the variability in sensor placement, and the limitations of
current deep learning models all present significant challenges to reliable pose estimation.
This study addresses these issues by investigating and proposing a series of model
optimizations, as well as augmenting robustness and generalization in real-world
deployment scenarios.
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1. Introduction

Precise human motion capture and pose estimation techniques have become increasingly important,
especially as technology has evolved and created new fields such as robotics control and virtual
reality. However, as the demand for high-precision and real-time pose estimation systems continues
to grow across various industries, the challenge of accurately reconstructing human movement in
complex dynamic environments remains pressing. One method that has gained traction is utilizing
Inertial Measurement Units (IMUs). Among them, the IMUPOSER method stands out due to its
immunity to environmental lighting and weather conditions, allowing it to perform robustly in both
indoor and outdoor environments. Additionally, IMU sensors offer high performance and sampling
rates, with flexible deployment due to curtailed setup. Most importantly, IMUPoser possesses strong
adaptability and scalability, enabling it to respond to new application scenarios through continuous
learning with modern deep learning techniques. These advantages provide us with substantial
motivation and research value.
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Although existing IMU-based pose estimation methods have achieved certain results, significant
shortcomings persist in practical applications. These primarily involve challenges in long-range
dependency modeling, robustness to real-world noise, and training efficiency. Furthermore, the
models currently in use are relatively simple, making them insufficient for comprehensively
capturing the complex dynamic behaviors present in real-world scenarios. These limitations are the
primary motivations behind our research. Building upon previous work, we aim to propose a new
method to address existing systems' shortcomings in terms of robustness and generalizability.

In this study, the main challenges lie in the chaotic noise present in the IMU dataset, the low
accuracy of pose estimation, large loss values, and slow training speeds. To address these issues, we
attempted methods such as adding white noise, tuning hyperparameters, modifying the loss function,
and adjusting the dropout rate to optimize the original LSTM model. Subsequently, we replaced the
LSTM with a new Transformer-based model for training and achieved more optimized results. At
the same time, by thoroughly reviewing cutting-edge literature and drawing from advanced
algorithms, we laid a solid foundation for tackling the significant errors encountered during sensor
data acquisition and model training.

The contributions of this study are mainly reflected in the following aspects:
First: Validating Advanced IMU Sequence ModelingThe primary contribution lies in

demonstrating the effectiveness of Transformers in capturing the complex, long-range dependencies
inherent in IMU motion data. Compared to traditional RNN+LSTM models, this can significantly
improve pose estimation accuracy. Our experimental validations provide robust empirical support,
confirming the feasibility of the optimized IMUPOSER framework in practical applications and
offering important references for future research in this field. This novel model architecture
significantly enhances responsiveness and accuracy in dynamic and complex environments.

Second: Establishing Strategies for Enhanced RobustnessWe aim to quantify the impact of a
robust data strategy—combining standardized processing with targeted data augmentations such as
noise injection—to demonstrate a clear improvement in model performance under realistic noise
conditions (as opposed to the dataset’s inherent chaotic noise).

2. Related works

2.1. Inertial-based pose estimation: a brief overview

Human pose estimation using inertial measurement units (IMUs) has been widely explored in both
academia and industry. Traditional approaches rely on kinematic models and sensor fusion
algorithms (e.g., Kalman filters, complementary filters) to estimate body motion from
accelerometer, gyroscope, and magnetometer data. However, these methods often suffer from drift
and require precise sensor calibration.

More recent deep learning-based approaches, such as Sparse Inertial Poser, Deep Inertial Poser
(DIP), and TransPose leverage neural networks to regress full-body poses from sparse IMU data.
These methods typically use optimization-based kinematic solvers or RNNs to model temporal
dependencies in IMU signals.

With the increasing ubiquity of consumer-grade devices like smartphones, smartwatches, and
wireless earbuds, there is growing interest in deploying IMU-based pose estimation "in the wild"
using readily available hardware. This shift presents new challenges such as noisy measurements,
variable sensor placements, and limited sensor coverage. In this context, our work focuses on
improving the robustness and generalization ability of current IMU-based pose estimation models
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through a series of lightweight architectural and training modifications, making them more suitable
for real-world applications.

2.2. IMUPoser: sparse IMU pose estimation with consumer devices

The IMUPoser system represents a significant advancement in opportunistic pose estimation by
utilizing IMUs embedded in everyday consumer devices such as smartphones, smartwatches, and
earbuds. In contrast to prior works that assume fixed sensor placements and dense instrumentation,
IMUPoser operates under more realistic conditions where the number and positions of sensors can
vary dynamically across time and users.

Input Representation
IMUPoser leverages both acceleration and orientation data captured in the global reference

frame. Orientation is expressed using 3×3 rotation matrices, and acceleration as 3D vectors. The
system supports up to five sensor locations across the body, and the final input to the model is a
concatenated 60-dimensional vector per time step (9D orientation + 3D acceleration for each
sensor).

Model Architecture
The backbone model is a two-layer bidirectional LSTM, each layer with a hidden size of 256.

This architecture captures temporal dependencies in the sequential IMU data, processing motion
dynamics bidirectionally to improve context awareness. The output of the LSTM is passed through a
fully connected layer to predict the SMPL pose parameters (a 144-dimensional vector corresponding
to body joint rotations).

Training and Refinement Pipeline
The model is trained using the AMASS motion capture dataset. The dataset contains synthetic

IMU data created by placing virtual sensors on the SMPL body model and deriving accelerations
and orientations from ground-truth motion. The use of synthetic IMU data allows for large-scale
training with controllable conditions, although it may not fully capture real-world sensor noise.To
ensure model predictions are physically plausible, IMUPoser integrates an inverse kinematics (IK)
refinement stage. This post-processing step adjusts predicted joint rotations to better match the
estimated root and end-effector trajectories. The result is more consistent and realistic model
predictions.

Known Limitations
While IMUPoser performs well in sparse sensor settings, it still suffers from several limitations.

First, its LSTM structure limits its ability to handle long-term motion patterns, which can result in
drift or loss of temporal coherence in extended sequences. Second, the model is vulnerable to the
effects of sensor noise, which are more pronounced in low-cost IMUs commonly found in mobile
devices. Inaccuracies are amplified by variations in placement, contact stability, and. Additionally,
although the system is designed to support flexible sensor configurations, the accuracy tends to
degrade significantly as the number of available sensors decreases or their positioning becomes
suboptimal.

In the future, improvements could be achieved by exploring attention-based architectures, real
sensor fine-tuning, or hybrid pipelines integrating visual cues.

2.3. Transformer-based approaches for inertial pose estimation

Transformers have demonstrated remarkable potential in sequence modeling tasks, primarily due to
their ability to capture long-range temporal dependencies through self-attention mechanisms.
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Transformers offer better parallelization and modeling of global context than recurrent architectures
such as RNNs, making them an apt choice for human motion estimation tasks based on inertial data.

While IMUPoser originally relied on LSTM networks to predict human poses from sparse IMUs,
several recent works have explored the application of Transformer-based architectures to improve
performance in inertial pose estimation:

Transformer Inertial Pose:
This approach replaces existing RNN modules with a Transformer encoder to perform real-time

pose regression. By leveraging the global receptive field of the Transformer, it achieves smoother
and more consistent motion. The ability to consider the entire motion history at each prediction step
helps to mitigate cumulative errors and improve temporal coherence.

Physical Inertial Poser:
To address the issue of jitter and instability in pose predictions, Physical Inertial Poser adds

physics-based constraints to the Transformer framework [1]. The constraints check the physical
plausibility of predicted movements: by ensuring valid joint limits and biomechanically realistic
motions, the model produces more stable and believable pose sequences. This hybrid approach
combines the representational power of Transformers with domain-specific knowledge from human
biomechanics.

AvatarPoser:
AvatarPoser introduces a cross-attention mechanism between multiple sparse IMU signals to

infer full-body motions [2]. Unlike standard attention models that treat all inputs equally, the cross-
attention in AvatarPoser selectively integrates information across different sensors, allowing the
model to better reconstruct detailed full-body movements even from highly limited sensor setups.

Despite these advances, it is important to note that none of the aforementioned works explicitly
address the challenge of dynamic sensor configurations—a key feature tackled by IMUPoser. In
real-world applications, wearable sensors like smartphones and earbuds can frequently shift
positions relative to the body. IMUPoser is specifically designed to handle such dynamic conditions,
maintaining robust pose estimation performance even when sensor placements vary. This capability
is crucial for practical deployment in everyday scenarios where fixed sensor alignment cannot be
guaranteed.

2.4. Robustness in IMU-based pose estimation

Most existing works on IMU-based pose estimation assume that the inertial data collected from
sensors is clean and reliable. However, in practice IMU measurements are often significantly
corrupted by various sources of noise. The major challenges include:

Low-cost sensors:
Consumer-grade IMUs, such as those embedded in smartphones and earbuds, typically suffer

from higher bias, increased drift, and lower sampling rates than professional motion capture
systems. These hardware limitations clearly have the potential to adversely impact pose estimation
accuracy.

Variable device placement:
In real-world applications, users often carry or wear devices in different ways, leading to

variations in sensor orientation and positioning. Such variability introduces additional uncertainty
into the inertial data, further complicating the pose estimation process.

Despite these challenges, relatively few studies have explicitly addressed the issue of robustness
to noisy data in IMU-based pose estimation. Some notable efforts include:

DIP (Deep Inertial Poser):
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DIP simulates realistic sensor noise by adding Gaussian noise to training data, thereby reinforcing
the model against low to moderate levels of noise during inference.

TransPose:
TransPose employs temporal smoothing techniques on the predicted poses to suppress high-

frequency artifacts caused by noisy IMU readings. By leveraging temporal consistency, TransPose
aims to produce more stable and visually plausible motion sequences.

However, the problem of robustness, particularly under conditions involving severe sensor noise
and dynamic device placements, remains largely underexplored. This gap highlights the need for
methods that can maintain accurate pose estimation performance even in highly noisy and variable
conditions, which is crucial for deploying inertial pose estimation systems in everyday consumer
environments.

2.5. Open challenges

Despite significant advancements in inertial pose estimation, several key challenges remain open
and require further investigation to enable broader real-world deployment:

Heterogeneous IMU noise across devices:As mentioned previously, different devices can differ
widely in accuracy and lead to inconsistent data quality. Models trained with data from a limited set
of sensors may overfit and struggle to reach comparable performance with different hardware
setups. Ways to address this issue, including adaptive calibration methods, domain adaptation
techniques, and robust learning strategies, remain important topics for future work.

Real-time performance on mobile hardware:Practical IMU systems must operate efficiently on
mobile devices with limited data processing capabilities. However, the mathematical calculations
required for pose estimation are often computationally expensive. Achieving real-time inference
while maintaining high prediction accuracy poses a significant technical challenge. Lightweight
model architectures, model compression techniques (e.g. pruning, quantization), and hardware-
aware neural network designs are promising strategies to enhance real-time performance without
sacrificing quality.

Generalization to unseen activities:Most existing models are trained and evaluated on a limited
range of activities, such as walking, running, or sitting. However, in practice, users engage in a wide
variety of motions, including cycling, swimming, climbing, and other activities that may differ
substantially from the training data. Generalizing to these unseen activities is critical for building
versatile and reliable pose estimation systems. Techniques such as few-shot learning, unsupervised
domain adaptation, or incorporating physics-based priors may help improve model generalization to
novel movements.

Overall, addressing these challenges is crucial to bridging the gap between academic research and
real-world deployment of inertial pose estimation technologies.

3. Methodology

3.1. Our improvements to IMUPoser

Our work enhances the IMUPoser system in two key aspects: (1) replacing the LSTM with a
transformer-based architecture and (2) explicitly improving robustness to noisy IMU data. Below,
we detail these improvements and their advantages over the original system.
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3.1.1. Transformer-based pose estimation

The original IMUPoser utilizes a two-layer bidirectional LSTM to process IMU sequences. While
effective for modeling short-term temporal dependencies, LSTMs are limited in their ability to
capture long-range motion patterns due to their sequential nature. To address this, we introduce:

Transformer Encoder Architecture:
We replace the LSTM with a transformer encoder employing multi-head self-attention, allowing

the model to capture global dependencies across the entire motion sequence [3]. Temporal
information is encoded via positional embeddings, mitigating the vanishing gradient problem
associated with recurrent structures [4]. The input and output formats remain consistent with the
original IMUPoser design.

Advantages over LSTM:
The transformer architecture demonstrates improved handling of intermittent sensor data, such as

earbuds being temporarily removed, and reduces motion jitter through more effective modeling of
smooth transitions over time.

Figure 1. Steps to training the transformer model, performed in succession from top to bottom, left
to right

3.1.2. Transformer model architecture details

The transformer model employed in our system features the following key components and
configurations:

Architecture Design:
Standard transformer encoder structure replaces the original RNN/LSTM model.
Incorporates positional encoding to allow the model to perceive temporal sequence information.

[4]
Employs multi-head self-attention with 8 attention heads [3].
Adjustable Parameters:
Hidden layer size (n_hidden): 512, larger than the original LSTM's 384.
Number of transformer layers (n_transformer_layers): 2
Number of attention heads (n_transformer_heads): 8
Dropout rate: 0.2, used for regularization.
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Activation function: GELU by default [5], with support for ReLU, LeakyReLU, and Swish
(SiLU) [6].

Interface Compatibility:
Maintains the same input-output interface as the original LSTM model for seamless replacement.
Supports variable-length sequences using padding masks.
Feedforward Network:
Uses a feedforward network with dimensionality four times the hidden size (dim_feedforward =

n_hidden × 4).
Input and output mapping layers retain a similar structure to the original design.
Training Configuration:
25 training epochs with early stopping (patience=5).
Saves the best three model checkpoints.
Advantages of the Transformer Model Compared to LSTM:
Parallel Processing: Transformers process entire sequences in parallel, unlike LSTM's sequential

nature, resulting in faster training, especially for long sequences [3].
Long-Distance Dependency Modeling: Self-attention allows direct connections between any two

time points, enabling better long-range modeling [3].
Greater Model Capacity: Larger hidden layers and multiple attention heads provide richer feature

representations.
Flexible Attention Allocation: The model dynamically focuses on relevant parts of the input

sequence.[3]
Modern Architecture: Utilizes GELU activations, aligned with best practices in current NLP and

sequence modeling fields [5, 6].

3.1.3. Noise robustness enhancements

Consumer-grade IMUs introduce significantly more noise compared to professional motion capture
systems. While IMUPoser applies basic temporal smoothing, it does not explicitly test or enhance
robustness against common noise sources.

To improve resilience to noisy real-world data, we implement:
Synthetic White Noise Injection:During training, we inject Gaussian white noise into the IMU

input signals. This exposes the model to random perturbations similar to those encountered in
consumer devices, enhancing its ability to distinguish true motion patterns from noise.

These enhancements enable the model to deliver more stable and accurate pose predictions, even
under sensor dropout, bias drift, and high-frequency noise conditions.
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Figure 2. More detailed procedure for preprocessing and embedding for transformer training

3.2. Tuning strategies for the Bi-LSTM model

We systematically tuned key hyperparameters of the Bi-LSTM model in IMUPoser to improve pose
estimation performance while avoiding overfitting. In particular, we focused on the hidden layer
size, dropout regularization, and the choice of activation function. Each of these aspects plays a
crucial role in balancing model capacity and generalization. In the following subsections, we detail
the motivation and effects of tuning each of these components, and how they influence the Bi-
LSTM’s ability to learn accurate pose mappings from sparse IMU data.

3.2.1. Training setup and hyperparameters

We describe the training settings and hyperparameters used for both our Bi-LSTM baseline and the
transformer-enhanced model.Unless otherwise specified, the following configurations were used
throughout all experiments:

General Training Settings:
Batch size: 256
Training/validation split: 90% / 10%
Maximum sample length: 300 frames
Acceleration scaling factor: 30
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Random seed: 0 (for reproducibility)
Bi-LSTM Model Hyperparameters:
Hidden size: 512
Input and inter-layer dropout rate: 0.2
Recurrent dropout rate (within LSTM cells): 0.0
Activation function: GELU (replacing the original ReLU) [6]
Learning rate: 3e-4
Transformer-Specific Parameters (in our improved model):
Number of transformer encoder layers: 2
Number of attention heads per layer: 8
Other Key Configurations:
Loss type: Mean Squared Error (MSE) by default; optionally L1 loss
Rotation representation: 6D representation
Use of joint loss: Optional, depending on the experiment setting
These configurations were selected to ensure fair comparisons across models and to maintain

training stability. Hyperparameters were tuned based on validation set performance.

3.2.2. Hidden layer size

The hidden layer size (i.e., the number of units in each LSTM layer) determines the capacity of the
Bi-LSTM to model complex temporal patterns in the IMU sequence. A larger hidden state
dimensionality allows the network to capture more intricate relationships in human motion data,
which can improve training accuracy and representation power. However, excessively large hidden
layers increase the number of parameters significantly, raising the risk of overfitting and slowing
down training. Thus, choosing an appropriate hidden size is a trade-off between model
expressiveness and the ability to generalize.

We explored a range of hidden layer sizes during development. Smaller hidden sizes (e.g., tens of
units) tended to underfit – the model lacked sufficient capacity to represent the full complexity of
human pose dynamics from IMU signals, resulting in higher training and validation errors. Larger
hidden sizes (e.g., several hundreds of units) were able to fit the training data better, but we observed
diminishing returns and even slight performance degradation on the validation set beyond a certain
point, suggesting overfitting. This behavior is consistent with the general machine learning principle
that model complexity should match the amount of available data.[7] Empirically, an intermediate
hidden size provided the best results in our case, achieving low training error while maintaining
strong validation performance.

Our findings align with configurations used in related human pose estimation models from IMU
data. For example, recent IMU-based pose regressors have employed Bi-LSTM architectures with
hidden state sizes on the order of a few hundred units [1]. Such models leverage the expressive
power of large LSTMs but must be regularized to prevent overfitting. In our experiments, we
ultimately selected a hidden layer size that offered a good balance between capturing complex
motion features and avoiding over-parameterization. Tuning this hyperparameter was critical – an
inadequately small LSTM would fail to learn important temporal dependencies (underfitting), while
an overly large LSTM could memorize training sequences rather than generalize to new motions
(overfitting). By choosing an optimal hidden dimension, we improved the model’s generalization to
unseen poses.
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3.2.3. Dropout regularization

Dropout regularization was another key technique we tuned to improve generalization. Dropout
involves randomly dropping units (along with their connections) during training, which prevents the
remaining neurons from co-adapting too strongly to any particular feature [8]. In practice, this forces
the network to learn redundant, robust representations of the data, as it cannot rely on any single
neuron being present every time. We applied dropout in the Bi-LSTM model to regularize both the
LSTM layers and the intermediate fully connected layers.

In our experiments, introducing dropout significantly mitigated overfitting. Without dropout, the
Bi-LSTM tended to fit the training data extremely closely (low training loss) but performed less well
on validation data, indicating poor generalization. By adding dropout with an appropriate rate
(probability of dropping units), the model’s performance on the validation set improved. Dropout
compels the model to rely on multiple distributed features rather than depending on any single
activation, which improved its ability to generalize to new subjects and motions. We tuned the
dropout rate by experimentation: a low dropout rate (e.g., 10–20%) yielded only modest
regularization, whereas a very high dropout rate (e.g., above 50%) caused underfitting (the model
could not learn the data effectively due to excessive information loss). We found that a moderate
dropout rate (around 20–30% in our case) provided a good trade-off, substantially reducing
overfitting while preserving the model’s capacity to learn.

Notably, the use of dropout not only improved generalization metrics but also had a positive
effect on the smoothness and realism of the predicted pose sequences. The Bi-LSTM model trained
with dropout produced smoother pose trajectories with less jitter, even when the input IMU data was
noisy. This observation is in line with prior work on IMU-based pose estimation: for instance, the
DIP-IMU study reported that adding dropout during training helped an RNN model produce
smoother motion sequences without any explicit smoothing constraints [1]. In our context, dropout
likely encourages the model to learn more stable patterns from the inherently noisy IMU signals,
thereby reducing spurious fluctuations in the output poses. Overall, tuning the dropout regularization
was essential for achieving a model that generalizes well; it allowed us to use a fairly expressive Bi-
LSTM (with the chosen hidden size) without succumbing to overfitting, ultimately improving the
reliability of pose predictions on unseen data [8].

3.2.4. Number of LSTM layers

In addition to the size of each LSTM layer, we also considered the number of layers (network depth)
in the Bi-LSTM architecture. Increasing the number of stacked LSTM layers can allow the network
to learn hierarchical temporal features: the first layer may capture low-level signal dynamics, while
subsequent layers can extract higher-level temporal abstractions. However, deeper networks are
more complex and prone to overfitting, and they require more data and computation to train
effectively. We experimented with one, two, and three stacked Bi-LSTM layers to determine an
appropriate depth for IMUPoser.

We found that using two Bi-LSTM layers provided a significant improvement in accuracy over a
single-layer architecture, without incurring the pitfalls of an overly deep model [9, 10]. A single-
layer Bi-LSTM was sometimes unable to model the full complexity of human motion sequences,
likely because it had to directly map raw IMU time series to pose outputs with only one stage of
temporal processing. Adding a second LSTM layer enabled a deeper sequence modeling: the first
LSTM layer could learn short-term temporal patterns and relationships from the IMU data, and the
second LSTM layer could further refine these representations by looking at a longer temporal
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context and more abstract correlations. This two-layer configuration has also been adopted in other
human motion estimation networks, indicating that it is a practical choice for balancing model
complexity and performance.

On the other hand, going to three LSTM layers yielded only marginal gains in our tests, and in
some cases started to overfit the training data. The third layer added many additional parameters but
did not substantially improve the validation accuracy, suggesting that two layers were sufficient to
capture the relevant dynamics given our training dataset size. Moreover, a deeper model is harder to
train (due to vanishing/exploding gradients and increased training time), especially for recurrent
networks. Therefore, we settled on a two-layer Bi-LSTM as the final architecture. Tuning the
network depth in this way ensured that the model was complex enough to learn the necessary
temporal structures, but not so deep as to overfit or become intractable to train. This choice,
combined with the appropriate hidden size and dropout, helped to maximize the model’s
performance and generalization capability.

3.2.5. Activation functions

The choice of activation function in the network’s layers was another important consideration. In the
initial design, we used the standard Rectified Linear Unit (ReLU) activation for the Bi-LSTM’s
fully-connected layers (and any additional dense layers) [8]. ReLU is popular in deep learning
because of its computational simplicity and its ability to mitigate the vanishing gradient problem
that affects sigmoid/tanh activations.

While ReLU worked reasonably well as a default, we explored alternative activation functions to
determine if they could further improve learning or performance.

We tested:
Leaky ReLU was one of the first alternatives we considered [8]. Leaky ReLU is a modified

version of the ReLU which introduces a small slope for negative inputs instead of zero [11].
Specifically, $f(x)=x$ if $x>0$, and $f(x)=\alpha x$ if $x<0$ (with $\alpha$ being a small constant,
e.g. 0.01). This addresses the “dying ReLU” problem by allowing a small, non-zero gradient when
the unit is inactive (negative). In theory, this helps mitigate cases where a ReLU neuron might
permanently become inactive for all inputs (stuck at zero output), since a Leaky ReLU will continue
to propagate a gradient for negative inputs. For our Bi-LSTM model, using Leaky ReLU could thus
preserve information from IMU features that produce negative values, whereas a standard ReLU
might truncate that information entirely. We hypothesized that this might lead to more robust
learning, though the effect can be subtle. Leaky ReLU retains the computational efficiency of ReLU
and does not introduce additional parameters (unless one uses the variant Parametric ReLU where
$\alpha$ is learned). We adopted a small fixed slope (on the order of a few percent) when testing
Leaky ReLU. This activation function performed similarly to (and in some cases slightly better than)
standard ReLU in our experiments, confirming that avoiding completely zeroed-out neurons is at
least not harmful and can be beneficial in certain layers.

We also experimented with more recently proposed activation functions that have gained
attention for their performance in deep networks: Gaussian Error Linear Units (GELU) and Swish.
GELU is a smooth, non-linear activation defined as $f(x)=x ,\Phi(x)$, where $\Phi(x)$ is the
cumulative distribution function of a standard Gaussian[5].Instead of abruptly zeroing out negative
values as ReLU does, GELU weights each input by how likely it is to be positive (essentially, it
gates the input by a smooth function of $x$ rather than a hard threshold). This means that large
positive inputs are passed through almost linearly, while values closer to zero (including negative
values) are partially scaled down but not entirely eliminated. This property can preserve finer-
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grained information and provide a form of implicit regularization, as extremely large negative inputs
are suppressed but moderately negative (or small positive) inputs can still contribute. The GELU
activation has been shown to outperform ReLU on a variety of tasks in computer vision, natural
language processing, and speech domains, and it has been adopted in modern architectures (for
example, the Transformer-based BERT model uses GELUs). Given this track record, we wanted to
assess whether GELU could offer advantages in the IMUPoser Bi-LSTM model.

Swish is another activation function we evaluated, which was discovered via automated search as
a promising alternative to ReLU. Swish is defined as $f(x) = x \cdot \sigma(x)$, where $\sigma(x)$
is the sigmoid function[6]. Essentially, Swish multiplies the input by its own sigmoid gate. Like
GELU, Swish is smooth and never truly zero for negative inputs (since $\sigma(x)$ approaches 0
but never equals 0 even as $x \to -\infty$). Swish is also mildly non-monotonic, meaning that its
curve has a slight bend that can allow a small negative input to yield a larger output than a slightly
more negative input – a property that may enable neural networks to escape certain learning
plateaus. Empirical studies have shown that Swish tends to outperform ReLU in many deep learning
benchmarks. The function effectively allows a small fraction of negative inputs to pass through
(weighted by a small sigmoid value), which – similar to Leaky ReLU – avoids killing the gradient
for all negative values, but does so in a smoothly varying manner. We expected that Swish might
help the Bi-LSTM model learn from subtle negative fluctuations in IMU data that a ReLU would
entirely ignore.

In the context of IMUPoser’s pose estimation task, these activation functions offer potential
advantages. IMU sensor streams can contain both positive and negative readings (for instance,
acceleration or angular velocity values might be positive or negative depending on direction and
orientation). A standard ReLU activation could inadvertently discard useful information carried by
negative values in such signals. By contrast, activations like Leaky ReLU, GELU, and Swish allow
the network to continue propagating some information even for inputs that would have been
completely zeroed out by ReLU. This means the Bi-LSTM can leverage a richer set of features,
including subtle cues where certain sensor channels or their combinations produce negative
activations that correlate with specific pose configurations. Furthermore, the smoother curves of
GELU and Swish provide more gradual gradients around zero, potentially improving the stability of
learning. In theory, this could lead to faster or more reliable convergence during training, as the
optimization is not subjected to abrupt changes in gradient when neurons switch on/off at zero.

Our experimental results when comparing activation functions indicated that the choice of
activation did have a measurable (though not drastic) impact on model performance. ReLU served
as a strong baseline, but we observed that both Swish and GELU provided a slight improvement in
validation accuracy and consistency of predictions. Leaky ReLU, as expected, gave performance
very close to standard ReLU, with a minor improvement in some metrics – likely due to mitigating
any “dying ReLU” issues in our network. Notably, the models using GELU or Swish exhibited
slightly better generalization: they were more accurate on unseen motion sequences and had more
stable training dynamics (for example, we noticed less fluctuation in the validation loss curve),
suggesting that the smoother gating of inputs helped the model learn the underlying mapping more
effectively. Although the gains from changing activation functions were not dramatic, these
alternatives proved to be viable choices. In summary, exploring different activation functions
confirmed that while ReLU is a reasonable default for this task, modern alternatives like GELU and
Swish can offer marginal gains in accuracy and training stability. For the final model, we elected to
use Swish given its consistently strong performance, but one could obtain competitive results with
any of these activation functions. The important takeaway is that activation functions are an
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additional tuning knob – selecting an appropriate nonlinearity further helped refine the IMUPoser
Bi-LSTM model, complementing the improvements gained from tuning the hidden layer size and
dropout.

3.3. Why our approach is superior

Our proposed method provides several significant improvements over existing approaches in inertial
pose estimation, particularly in real-world, unconstrained settings. Specifically, it addresses two
critical limitations that are commonly overlooked or insufficiently handled in previous works:
dynamic sensor configurations and real-time efficiency.

Dynamic Sensor Configurations with Improved Noise Resilience:Unlike many prior models,
which assume fixed sensor placements and clean IMU signals, our approach is designed to robustly
handle dynamic sensor configurations while maintaining strong performance in the presence of
noisy data. In real-world usage, consumer devices such as smartphones, earbuds, and smartwatches
may shift positions relative to the body during daily activities. Traditional models often experience a
significant drop in accuracy under such conditions because they are sensitive to slight changes in
sensor orientation or positioning. In contrast, our model incorporates architectural adaptations and
training strategies (e.g., data augmentation, robust feature extraction) that make it inherently more
tolerant to dynamic, noisy inputs.

Furthermore, while IMUPoser initially introduced dynamic sensor handling, our modifications
enhance its resilience to sensor noise. We achieve this through improved network regularization,
optimized Bi-LSTM design, and activation function tuning, which together make the model less
sensitive to fluctuations in the IMU signals. As a result, our approach produces more stable, accurate
pose predictions even when the input data is degraded by real-world artifacts like drift, bias, or
variable sampling rates.

Real-Time Efficiency on Mobile Devices:Real-time performance is a crucial requirement for
practical deployment of inertial pose estimation systems, especially on mobile and wearable
hardware with limited computational resources. Many existing methods achieve high accuracy but at
the cost of substantial computational complexity, making them unsuitable for on-device inference.

Our approach specifically optimizes the model architecture to reduce computational overhead
without compromising accuracy. By tuning the hidden layer size, minimizing unnecessary network
depth, and carefully selecting activation functions, we have developed a lightweight Bi-LSTM-
based model that supports real-time inference on mobile devices. This enables the model to process
IMU data streams and output pose predictions at interactive frame rates, which is essential for
applications such as live avatar animation, fitness tracking, or rehabilitation monitoring.

Moreover, the efficiency of our model ensures that it can be deployed on a wide range of
consumer devices without the need for specialized hardware or cloud-based computation, thus
broadening its applicability in everyday scenarios.

In summary, by explicitly addressing the challenges of dynamic sensor placement, noise
resilience, and computational efficiency, our approach advances the field of inertial pose estimation
toward real-world usability. It offers a practical solution that balances robustness, accuracy, and
speed, making it better suited for deployment in uncontrolled, noisy environments where prior
methods often struggle.
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4. Experiments

This section details the experimental methodology employed to evaluate the proposed Transformer-
based model against an optimized Bi-LSTM baseline for IMU-based human pose estimation. The
primary task involves predicting SMPL parameters, with joint rotations represented using the 6D
rotation formalism.

4.1. Experimental setup

Datasets:
Experiments were conducted on datasets derived from AMASS, specifically utilizing the

following subsets:
- BioMotionLab_NTroje.pt
- TotalCapture.pt
- Transitions_mocap.pt
- Eyes_Japan_Dataset.pt
- HumanEva.pt- DFaust_67.pt
- BMLhandball.pt
and DIP_IMU.
The combined dataset size is approximately 1.6GB, containing around 203 sample sequences.

The data was randomly partitioned into training, validation, and test sets using an approximate
80%/10%/10% split.

Preprocessing:
- IMU sensor data was normalized.
- Accelerometer readings were scaled by a factor of 30.
[Optional: Add other critical preprocessing steps here, e.g., gravity alignment, downsampling.]
Evaluation Metrics:
- Primary Metrics:
- Mean Per Joint Position Error (MPJPE) (in mm)
- Mean Angle Error (MAE) (in degrees)
- Training Monitoring Metric:
- Mean Absolute Error on 6D Rotation (MAE-6D): L1 loss between predicted and ground-truth

6D vectors (unitless).
Implementation Details:
- Framework: PyTorch, using PyTorch Lightning (v2.0+).
- Mixed Precision: 16-bit AMP for Transformer model.
- Training Tracking: Weights & Biases (wandb).
- Hardware: NVIDIA A800-SXM4-80GB GPU ×1.

4.2. Evaluated models

1.Optimized Bi-LSTM (Baseline):
- Architecture: 2
-layer Bi-LSTM.
- Activation: GELU.
- Hyperparameters:
- Hidden Size = 512
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- Input/Layer Dropout = 0.2
- Recurrent Dropout = 0.0
- Learning Rate = 3e-4
2.IMUPoser-Transformer (Proposed):
- Architecture:
- Input Projection Layer
- Sinusoidal Positional Encoding
- 4-layer Transformer Encoder with Local Window Attention (window size = 32)
- Regression head predicting SMPL parameters.
- Configuration:
- Encoder Layers (L) = 4 
- Model Dimension (d_model) = 768
- Attention Heads (nhead) = 12
- Feed-Forward Dimension (FF Dim) = 3072
- Dropout = 0.3
- FFN Activation = GELU
- Learning Rate:
- Initial max LR = 1e-4

4.3. Training procedures

- Optimized Bi-LSTM:
- Optimizer: Adam
- Learning Rate: 3e-4 (fixed)
- Epochs: 25
- No learning rate scheduler used.
- IMUPoser-Transformer:
- Optimizer: AdamW (weight decay=0.01, betas=(0.9, 0.999))
- Scheduler: OneCycleLR with 10% warmup, cosine annealing
- Max LR: 1e-4
- Epochs: ~198
- AMP Enabled.
- Common Settings:
- Batch Size: 32
- Loss Function: L1 Loss on 6D rotation representation (MAE-6D).
- Best model selected based on lowest validation MAE-6D.

4.4. Results and analysis

Table 1. Performance comparison (validation set metric)

Model MAE (6D Rot,
Unitless, Val) ↓

MPJPE (mm)
(Test) ↓

MAE (degrees)
(Test) ↓

Epochs
Trained Key Training Parameters

Optimized Bi-LSTM (L=2,
GELU) ~0.0135¹ [Pending

Eval] [Pending Eval] 25 Adam, LR=3e-4

IMUPoser-Transformer
(L=4, d=768, h=12) ~0.00554¹ [Pending

Eval] [Pending Eval] ~198 AdamW, LR=1e-4,
AMP, OneCycleLR
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¹ MAE-6D (Unitless) value derived from the lowest validation loss recorded during training logs.
~ indicates approximate value. Test set evaluation using MPJPE/MAE(deg) is required for final
performance assessment.

Analysis:
The results obtained during training, specifically the validation MAE-6D, strongly suggest the

superiority of the proposed Transformer architecture. The optimized 4-layer Transformer model
achieved a validation MAE-6D of approximately 0.00554, significantly lower than the ~0.0135
achieved by the 2-layer Bi-LSTM baseline.

This substantial reduction in MAE-6D indicates that the Transformer, leveraging local self-
attention (window size = 32) and an optimized training regime (AdamW, OneCycleLR, AMP,
extended training), captures complex temporal dynamics in IMU sequences more effectively than
Bi-LSTM.

While the validation MAE-6D provides strong evidence for the Transformer's better
representation learning, conclusive claims regarding pose estimation accuracy require evaluation on
the held-out test set using MPJPE (mm) and/or MAE (degrees). [Insert detailed analysis comparing
MPJPE/MAE(deg) once available. Discuss the magnitude of improvement and its significance.]
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Appendix

Figure A.1. Training curves for the optimized Bi-LSTM baseline model (L=2, Hidden=512, GELU,
LR=3e-4, Adam). Plots show training loss and validation loss (MAE-6D, unitless) over 25 epochs of

training. The final validation MAE-6D achieved was approx. 0.0135

Figure A.2. Training curves for the first Transformer variant (Transformer V1: L=2, H=8,
Dropout=0.2, GELU, LR=3e-4 [Please confirm parameters]). Plots show training loss and validation

loss (MAE-6D, unitless) over approx. 104 epochs of training. The final validation MAE-6D
achieved was approx. 0.00544
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Figure A.3. Training curves for the final proposed Transformer model (Transformer V2: L=4, d=768,
H=12, FF=3072, Dropout=0.3, GELU, Sinusoidal PE, Local Attention(32)). Plots show training

loss, validation loss (MAE-6D, unitless), learning rate (AdamW, OneCycleLR, Max LR=1e-4), and
epoch count over approx. 198 epochs of training with AMP enabled. The final validation MAE-6D

achieved was approx. 0.00554


