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Abstract. As deep learning has rapidly progressed in the 21st century, artificial neural networks 

have been continuously enhanced with deeper structures and larger parameter sets to tackle 

increasingly complex problems. However, this development also brings about the drawbacks of 

high computational and storage costs, which limit the application of neural networks in some 

practical scenarios. As a result, in recent years, more researchers have suggested and 

implemented network pruning techniques to decrease neural networks' computational and 

storage expenses while retaining the same level of accuracy. This paper reviews the research 

progress of network pruning techniques and categorizes them into unstructured and structured 

pruning. Finally, the shortcomings of current pruning techniques and possible future 

development directions are pointed out. 

Keywords: deep learning, artificial neural network, pruning, model compression, convolutional 

neural network. 

1.  Introduction 

Nowadays, deep learning has made remarkable strides in various domains, such as computer vision and 

natural language processing, surpassing traditional methods with significant improvements in accuracy. 

Deep learning is based on artificial neural networks to extract and learn data distribution characteristics. 

Since the emergence of deep learning, the most profound learning researchers have been working to 

develop models with deeper hierarchies and more parameters to fit the data distribution better and achieve 

higher accuracy. However, this also leads to problems such as large model sizes and slow computation. 

For example, the VGG16 [1], proposed in 2015, has an astonishing 138M parameters, and subsequently, 

more massive networks such as ResNet [2]and DenseNet [3] have appeared. Even with the acceleration 

of devices such as GPUs, it is hard to meet the needs of some practical scenarios. The use of deep learning 

has been limited in some embedded devices and portable devices such as mobile phones because of the 

demand for high-performance hardware.  

The neural network can fit approximately any function after training. Nevertheless, current large-scale 

deep neural networks are usually "over-parameterized," meaning that specific parameters in the neural 

network do not significantly contribute to the results. Therefore, removing these parameters with small 

contributions while maintaining the original accuracy has become an important research focus. 

As early as 1990, Lecun et al. [4] proposed removing the small-contributing parameters from neural 

networks. This can not only decrease the network's computational complexity but also enhance its 

generalization ability and solve the problem of overfitting. Pruning is one of the standard methods for 

compressing neural networks, as it can remove many low-contributing parameters while maintaining the 

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230182

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

334



original accuracy of the network and reducing its computational complexity, thus achieving effective 

compression. Of course, besides pruning, there are many other methods for compressing networks, such 

as knowledge distillation [5] and quantization [6]. This article mainly .shortcomings of current pruning 

methods and possible future development directions in the end, as shown in figure1. 

Methods for artificial pruning of neural networks can be broadly categorized into two types: 

unstructured pruning and structured pruning. Unstructured pruning can prune specific weights, thereby 

increasing the sparsity of the model. On the other hand, structured pruning has a larger granularity and 

prunes kernels or channels, but this changes the original structure of the network, hence the name 

"structured pruning." 

 

Figure 1. Article structure. 

2.  Unstructured pruning 

Non-structured pruning appeared early. As early as 1990, Lecun et al. [4] proposed the optimal brain 

damage (OBD) method, which is also an early pruning method based on connection importance. They 

established a local model of the error function and deleted parameters through Taylor expansion to reduce 

network size and improve generalization. However, although OBD hypothetically ignored the off-

diagonal terms of the Hessian matrix, it still needs to calculate part of the Hessian matrix, which 

undoubtedly dramatically increases the computational cost of optimization. 

Han et al. [7] proposed to prune the network by learning to find essential connections. Iteratively 

removing the connections with weights below a certain threshold from the network can significantly 

reduce the number of neurons in the final network. Han et al. additionally integrated quantization and 

Huffman coding to further compress the model, shrinking the parameter count of the ImageNet-trained 

VGG16 model from 138M to 11.3M. However, the above methods require much time and exceptional 

hardware support. 

Generally, regularization-based pruning methods constrain the network parameter count during the 

training process with norms. Among norms, the 𝐿0 norm is one of the most basic norms, which denotes 

‖𝑥‖0 = 𝑐𝑛𝑡{𝑖|𝑥(𝑖) ≠ 0} (1) 
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In the formula, 𝑐𝑛𝑡  represents the number of elements in the {𝑖|𝑥(𝑖) ≠ 0}, and 𝑥  represents a 

vector, so 𝐿0 norm represents the quantity of non-zero elements in 𝑥 . However, the 𝐿0 norm cannot 

be derived, making it unusable in normal circumstances. Typically, it is approximated by other norms, 

and the 𝐿1 and 𝐿2 norms are commonly used. The 𝐿1 norm is as follows 

‖𝑥‖1 = ∑|𝑥𝑖|

𝑖

(2) 

The 𝐿1 norm of a vector 𝑥 is the total of the absolute values of all its elements. The 𝐿1 norm is 

defined as follows: 

‖𝑥‖2 = √∑|𝑥𝑖|2

𝑖

(3) 

Louizos et al. [8] proposed using variational optimization theory to make the introduction of 𝐿0 loss 

function differentiable, thereby solving the problem that the 𝐿0 norm cannot be derived. 

In 2018, Zhang et al. [9] suggested a technique that transformed the weight pruning challenge of neural 

networks into a problem about constrained non-convex optimization and employed the Alternating 

Direction Method of Multipliers algorithm for network pruning. 

Although unstructured pruning increases the sparsity of the network by directly removing parameters 

while maintaining the network's original accuracy, its effectiveness is often limited in practical scenarios. 

Firstly, storing sparse matrices in the network incurs additional memory costs. Secondly, there is currently 

a scarcity of software and hardware platforms that can efficiently perform sparse matrix operations, which 

makes it challenging to replicate the experimental findings reported in the literature. Finally, optimizing 

the network demands a considerable amount of time and resources. 

3.  Structured pruning 

In recent years, convolutional neural networks (CNNs) have become ubiquitous in deep learning. While 

unstructured pruning can effectively reduce the size of neural networks to some extent, it faces particular 

challenges when applied to convolutional neural networks, including the following issues: 

• Unstructured pruning usually needs to consider and prune each weight separately. This may lead 

to the irregular distribution of residual weights, thus destroying local connection characteristics and 

weight sharing in convolutional neural networks. 

• Unstructured pruning may destroy the sparsity of convolution operations in convolutional neural 

networks, resulting in reduced efficiency of convolution operations. 

• Convolutional neural networks typically contain a high concentration of parameters within the 

fully connected layer. These parameters are usually unsuitable for unstructured pruning because there is 

a dense connection between these parameters. However, unstructured pruning cannot handle this dense 

connection. 

Therefore, structured pruning is usually used for the pruning of convolutional neural networks. This 

method can maintain the sparsity and local connection characteristics of convolutional neural networks 

and can competently deal with the problem of parameter-dense connection in the fully connected layer.  

This paper divides structured pruning into Filter-wise, Channel-wise, Group-wise, and Stripe-wise. 

Next, these four pruning methods will be introduced and compared. 

3.1.  Filter-wise pruning 

Convolution kernel pruning is an essential structured pruning method that reduces the computational 

complexity and the number of network parameters by deleting some convolution kernels with small 

contributions in the network and maintaining the network performance as much as possible. The 

following will introduce four typical convolution kernel pruning algorithms.  

In a matrix, the rank of the matrix often represents the amount of information carried by the matrix. 

Lin et al. [10] found that it is the same that a specific convolution kernel generates multiple feature maps’ 
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average ranks. After experimental verification, the larger the rank of the feature map, the more 

information it contains. So, they proposed the HRank method. The importance of different convolution 

kernels in the model is obtained by analyzing the rank of the feature map. Finally, the convolution kernels 

that generate low-rank feature maps are cut off to achieve the compression model effect.  

ThiNet [11] is a pruning method based on accelerated sparse convolutional neural networks proposed 

by Luo et al.. The central concept is to prune the convolutional neural network by examining the 

redundancy among feature maps to decrease the computational and storage requirements of the network. 

In contrast to conventional pruning methods, ThiNet utilizes a novel index termed "feature reuse rate" to 

gauge the extent of reuse of each filter in the convolution layer across distinct feature maps. Specifically, 

ThiNet first clusters the input data to gather similar data together and then obtains a sub-sampled data set 

by sub-sampling the data of each cluster. Then, for each filter in the convolution layer, the correlation 

and feature reuse rate between it and other convolution kernels are calculated, and the convolution kernels 

are sorted according to these indicators. Then, by pruning the filter with a low reuse rate, the computation 

and storage of the network can be reduced. 

In 2018, He et al. [12] considered that much previous work was Hard Filter Pruning, that is, deleting 

convolution kernels directly and unrecoverable, which may reduce the network's learning ability. 

Therefore, they proposed Soft Filter Pruning ( SFP ). Precisely, the 𝐿𝑝 norm is calculated during the 𝑘 

round of training, and then the filter with a smaller 𝐿𝑝 norm is set to zero, and then the 𝑘 + 1 round of 

training is performed. After updating the weights in the filter by error backpropagation, the 𝐿𝑝 norm and 

zeroing operations are repeated until the end of training. Finally, the filter with a smaller 𝐿𝑝 norm is 

pruned. This method dynamically adjusts the pruning of the filter during the training process so that the 

network accuracy after pruning is even higher than the original network. 

He et al. proposed the FPGM [13] algorithm in 2019, which compresses the model by pruning 

redundant filters instead of convolution kernels with relatively minor importance. The primary concept 

of the FPGM algorithm is to determine the significance of the filter by calculating the geometric median 

of each filter. In the training process, the FPGM algorithm sorts the convolution kernels according to the 

geometric median of the filters and deletes a certain proportion of the less critical filters. The FPGM 

algorithm does not entirely use norm-based pruning criteria for pruning, which can more accurately 

evaluate the importance of each filter and has a good pruning effect (Figure 2). 

 

Figure 2. The process of pruning. 
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3.2.  Channel-wise pruning 

Channel pruning compresses the network by removing channels with little contribution and unimportant 

information in the neural network. The following will introduce several typical channel pruning methods 

(Table 1).  

Table 1. shows the comparison of pruning algorithms. All these tests' dataset is CIFAR-10. Top-1 refers 

to the accuracy of the category with the highest prediction probability in line with the actual results. 

Algorithm Model Compression ratio Acceleration ratio Top-1 

SFP[12] ResNet-110 30% 40.8% 93.86% 

SFP[12] ResNet-56 40% 52.6% 93.35% 

FPGM[13] ResNet-110 40% 52.3% 93.85% 

FPGM[13] ResNet-56 40% 52.6% 93.86% 

HRank[10] ResNet-110 58.2% 59.2% 93.36% 

HRank[10] ResNet-56 74.1% 68.1% 90.72% 

Liu et al. [14] proposed that each channel in the network can be optimized by introducing a scaling 

factor. Specifically, each channel is multiplied by a scaling factor. Then these factors are added to the 

network training, which is regularized to achieve the purpose of sparse factors. According to this idea, 

the loss function of network training is defined as 

𝐿 = ∑ 𝑙𝑜𝑠𝑠(𝑓(𝑥, 𝑤), 𝑦) + 𝜆 ∑ 𝑔(γ)

γ∈Γ(𝑥,𝑦)

(4) 

The first half of the loss function is the loss of network output and label, where 𝑥 is the network input 

and 𝑦 is the training label. The latter part is the loss caused by the regularization of the channel factor, 

where γ is the channel scaling factor, and 𝑔 represents a regularization norm. In the author's paper, the 

𝐿1 norm is used, and 𝜆 is a hyperparameter.  

After training, the channel scaling factor γ in the network will change with the iteration of the 

network. When γ is small, it indicates that the importance of the current channel is low. Therefore, the 

channel with a small channel factor can be selected to delete to achieve the effect of reducing network 

size and position accuracy. 

The original essay's channel scale factor comes from the BN layer's scale factor [15]. The BN layer is 

as follows: 

�̂� =
𝑧𝑖𝑛 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

;   𝑧𝑜𝑢𝑡 =  γ�̂� + 𝛽 (5) 

Where 𝑧𝑖𝑛 is the BN layer input, 𝜇𝐵 is the input mean, 𝜎𝐵
2 is the input variance, 𝑧𝑜𝑢𝑡 is the BN 

layer output,γand 𝛽 are trainable parameters, where γ is the scale factor, which is directly used as the 

channel scale factor and used to judge the importance of the channel. However, Huang and Wang [16] 

improved the method since some networks may not have a BN layer. They proposed introducing 

additional scale factors to make the method more general.  

Although the above-proposed method is effective, it needs to train the entire network from scratch 

when pruning the network, which may generate much extra time overhead. Therefore, there is also a 

pruning algorithm for the trained model, which only needs to fine-tune the network after pruning. 

Polyak and Wolf [17] argued that an input channel has different contributions to the output of different 

convolution kernels, so they proposed a method based on eliminating low-activity channels, calculating 

the variance of the output value of each channel, and using the variance as the channel activity index. 

Specifically, for a convolutional layer 𝑡 with input 𝑋, output 𝑌, weight 𝑊, and depth 𝑚, there are 

𝑌𝑡 = ∑ 𝑊𝑡𝑠 ∗ 𝑋𝑠
𝑚
𝑠=1 (6)  

Therefore, the channel activity from the convolution kernel 𝑡 comes from 𝑊𝑡𝑠 ∗ 𝑋𝑠, so its variance 

can be calculated as 
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𝜎𝑡𝑠 = 𝑣𝑎𝑟(‖𝑊𝑡𝑠 ∗ 𝑋𝑠‖F) (7) 

The larger the variance, the richer the features learned by the channel and the more significant the 

contribution to the results. By setting a threshold, the less active channels are deleted, which can 

effectively reduce the network's computation and storage. 

There is also a class of channel pruning algorithms based on machine learning methods and search 

algorithms to find excellent network compression structures. Hu et al. [18] proposed that the channel 

pruning algorithm can be regarded as a combinatorial optimization problem with exponential solution 

space, which a genetic algorithm can solve. In order to improve the search efficiency of the genetic 

algorithm, a two-step approximate fitness function is designed. Chang et al. [19] divided the optimization 

process into four parts. Firstly, clustering was performed by the resemblance of feature maps for initial 

pruning. Secondly, by employing the population initialization technique to convert the network structure 

into a set of candidate populations. These populations are then subject to a search process based on 

particle swarm optimization to identify the optimal compression structure. Finally, the pruned network 

undergoes a fine-tuning phase (Figure 3). 

 

Figure 3. F1 is a set of convolution kernels, k1 is the first flattened convolution kernel in f1, s1 is the 

first input channel, l1 is a flattened patch in the input channel. The image on the left side represents 

the network before pruning, while the image on the right side depicts the network after pruning. 

3.3.  Group-wise pruning 

Implementing most convolution operations is not as direct as it seems to slide the convolution kernel on 

the input channel because such a calculation method is challenging to optimize the acceleration, and it is 

easier to optimize the acceleration by converting it into matrix multiplication. On the one hand, the 

operation data is stored in persistent memory after transforming into a matrix, which is convenient for 

hardware optimization acceleration, such as cache. On the other hand, many libraries implement efficient 

matrix multiplication, such as BLAS [20], which can significantly accelerate the operation speed.  

The group-wise pruning prunes the exact position of a set of convolution kernels. This pruning method 

can fully use the operation mentioned above through the structured sparse convolution kernel to compress 

the matrix and achieve the acceleration effect. Because of its small pruning granularity, it can achieve a 

good compression effect. 

In 2016, Lebedev and Lempitsky [21] proposed a pruning method based on Group-wise. They 

believed that the matrix multiplication method of convolution calculation mentioned above could be used 

to achieve accelerated calculation. They considered two optimization processes at the same time. The 

first one is to sparse the model during training, and the second is to sparse the trained model. For the first 

optimization process, they add a group-sparse regularizer based on the 𝐿2,1 norm to the gradient loss of 

the network so that the network can generate a specific group sparse structure. For the second 

optimization process, they adopted the Gradual Group-wise Sparsification method. Specifically, they 

selected groups with small regularization terms by setting a specific threshold for sparseness, reducing 
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damage to the critical part of the network after the neural network is structured sparsely in the form shape-

wise, and the matrix operation of the convolution changes. 

After deleting a set of convolution kernels with parameters at the same position, the convolution kernel 

participating in matrix operation becomes smaller, thus realizing network acceleration. It is affected, 

thereby reducing the damage of sparseness to essential parts of the network by setting the hold-out set to 

maintain. 

In ' Learning Structured Sparsity in Deep Neural Networks ' [22], Wen et al. summarized the 

optimization goal of Group-wise pruning as follows : 

𝐸(𝑊) = 𝐸𝐷(𝑊) + 𝜆𝑠 ∙ ∑ ( ∑ ∑ ∑ ‖𝑊:,𝑐𝑙,𝑚𝑙,𝑘𝑙

(𝑙)
‖

𝑔

𝐾𝑙

𝑘𝑙=1

𝑀𝑙

𝑚𝑙=1

𝐶𝑙

𝑐𝑙=1

)

𝐿

𝑙=1

(8) 

Where 𝐸𝐷(𝑊)  denotes the prediction loss, ∑ (∑ ∑ ∑ ‖𝑊:,𝑐𝑙,𝑚𝑙,𝑘𝑙

(𝑙)
‖

𝑔

𝐾𝑙
𝑘𝑙=1

𝑀𝑙
𝑚𝑙=1

𝐶𝑙
𝑐𝑙=1 )𝐿

𝑙=1  is the 

regularization of the weight of the group lasso paradigm, 𝜆𝑠 is the regularization factor, the purpose is 

to balance the two items. 

Later, in 2019, Wang et al. [23] believed that the fixed-size regularization factor usually used in the 

previous method ignores the sensitivity of the CNN network and may cause damage to the CNN network. 

Therefore, they improved the optimization goal and proposed a dynamic regularization method. 

Specifically, they introduced unstructured regularization terms and group lasso regularization terms into 

the optimization goal and weighted them with dynamic regularization factors. This method has a very 

high acceleration rate and a minimal accuracy decline among many methods at that time. 

3.4.  Stripe-wise pruning 

The pruning methods mentioned above almost consider the importance of different parameters in the 

neural network, while Stripe-wise pruning is based on the consideration of filter shape.  

Meng et al. [24] proposed this method in their paper 'PRUNING FILTER IN FILTER' published in 

2020. They implicitly learned the better shape of the filter by introducing Filter Skeleton into the 

convolution layer during training. Specifically, they describe the loss function as  

𝐿 = ∑ 𝑙𝑜𝑠𝑠(𝑓(𝑥, 𝑊 ⊙ 𝐼), 𝑦)

(𝑥,𝑦)

(9) 

Among them, ⊙ represents the point multiplication operation, 𝑊  represents the weight in the 

convolution layer, and 𝐼 represent Filter Skeleton. I hope to learn the different Stripes' importance by 

adding Filter Skeleton to gradient descent. However, this alone does not filter out some Stripes with less 

contribution well, so the author adds a regularization term to the loss function to sparse the filter Skeleton 

and achieves a better filtering result. 

After learning the better shape of the filter through Filter Skeleton, some Stripes are deleted, but this 

will destroy the structure of the convolution. The author uses the method of reorganizing the filter. They 

transform the original N filters with a size of 𝐾 ∗ 𝐾 into 𝑁 ∗ 𝐾 ∗ 𝐾 filters with a size of 1 ∗ 1, as 

shown in Figure 4. 

 

Figure 4. The process of reorganizing. 

After this operation, the shape learned by the previous Filter Skeleton can be used to delete some 

filters to achieve the effect of compressing the model. Since this method solely prunes at the Stripe level, 
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it can preserve high performance without requiring fine-tuning. Additionally, it can achieve a high 

pruning rate due to its small pruning granularity. 

4.  Conclusion and discussion 

The primary purpose of pruning is to decrease the parameters of a network and expedite network 

computations. In this paper, the pruning algorithms of neural networks in recent years are classified and 

summarized. The unstructured pruning algorithm and the structured pruning algorithm are introduced. 

According to the pruning granularity and starting point, the structured pruning algorithms are divided 

into four categories: Filter-wise pruning、Group-wise pruning、Stripe-wise pruning, and Channel-wise 

pruning.  

Unstructured pruning can delete the parameters with negligible contribution from the neural network 

to the greatest extent. However, it needs the support and optimization of hardware and library to exert its 

advantages.  

Compared with unstructured pruning, structured pruning has a larger granularity, which can optimize 

the network's structure and does not need additional hardware and library support because it directly 

reduces parameters. The main disadvantage is that the change of input and output dimensions in the 

middle layer of the network may cause profound accuracy loss or some deviation to the network, and 

even the disappearance of the middle layer of the network may occur. 

The practical and easy-to-implement structured pruning algorithms are mainly about convolutional 

neural networks. However, with the popularity of language processing models such as ChatGPT in recent 

years, it can be predicted that natural language processing tasks will receive more attention. As the 

backbone network of most language processing models, Transformer [25] has excellent context 

processing capabilities and heavy parameters and calculations to neural networks. Therefore, 

implementing an algorithm that can effectively compress the Transformer skeleton network will be a 

promising direction.  

In addition, graph neural networks are more in line with the human brain structure in theory and may 

have significant development in the future. However, there are few pruning algorithms for neural graph 

networks, so that pruning algorithms can be developed for such networks in the future.  

Several automated network structure search algorithms have emerged, such as the SPOS [26] and the 

ENAS algorithm [27]. They are committed to finding the optimal network sub-model through search 

algorithms, simplifying the network structure. 

References 

[1] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image 

Recognition.” arXiv, Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556. 

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 

USA, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90. 

[3] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional 

Networks.” arXiv, Jan. 28, 2018. Accessed: Feb. 19, 2023. [Online]. Available: 

http://arxiv.org/abs/1608.06993 

[4] Y. Lecun, “Optimal Brain Damage,” Neural Information Proceeding Systems, vol. 2, no. 279, pp. 

598–605, 1990, doi: http://dx.doi.org/. 

[5] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A Survey,” Int J Comput Vis, 

vol. 129, no. 6, pp. 1789–1819, Jun. 2021, doi: 10.1007/s11263-021-01453-z. 

[6] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A Survey of 

Quantization Methods for Efficient Neural Network Inference.” arXiv, Jun. 21, 2021. 

Accessed: Mar. 06, 2023. [Online]. Available: http://arxiv.org/abs/2103.13630 

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and Connections for Efficient 

Neural Network”. 

[8] C. Louizos, M. Welling, and D. P. Kingma, “Learning Sparse Neural Networks through $L_0$ 

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230182

341



Regularization.” arXiv, Jun. 22, 2018. doi: 10.48550/arXiv.1712.01312. 

[9] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural 

Network for Mobile Devices,” in 2018 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, Salt Lake City, UT, Jun. 2018, pp. 6848–6856. doi: 

10.1109/CVPR.2018.00716. 

[10] M. Lin et al., “HRank: Filter Pruning Using High-Rank Feature Map,” in 2020 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, Jun. 

2020, pp. 1526–1535. doi: 10.1109/CVPR42600.2020.00160. 

[11] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A Filter Level Pruning Method for Deep Neural Network 

Compression,” in 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 

Oct. 2017, pp. 5068–5076. doi: 10.1109/ICCV.2017.541. 

[12] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft Filter Pruning for Accelerating Deep 

Convolutional Neural Networks,” in Proceedings of the Twenty-Seventh International Joint 

Conference on Artificial Intelligence, Stockholm, Sweden, Jul. 2018, pp. 2234–2240. doi: 

10.24963/ijcai.2018/309. 

[13] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter Pruning via Geometric Median for Deep 

Convolutional Neural Networks Acceleration,” in 2019 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 4335–4344. 

doi: 10.1109/CVPR.2019.00447. 

[14] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning Efficient Convolutional 

Networks through Network Slimming,” in 2017 IEEE International Conference on Computer 

Vision (ICCV), Venice, Oct. 2017, pp. 2755–2763. doi: 10.1109/ICCV.2017.298. 

[15] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing 

Internal Covariate Shift”. 

[16] Z. Huang and N. Wang, “Data-Driven Sparse Structure Selection for Deep Neural Networks,” in 

Computer Vision – ECCV 2018, vol. 11220, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. 

Weiss, Eds. Cham: Springer International Publishing, 2018, pp. 317–334. doi: 10.1007/978-

3-030-01270-0_19. 

[17] A. Polyak and L. Wolf, “Channel-level acceleration of deep face representations,” IEEE Access, 

vol. 3, pp. 2163–2175, 2015, doi: 10.1109/ACCESS.2015.2494536. 

[18] Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu, “A novel channel pruning method for deep neural 

network compression.” arXiv, May 29, 2018. doi: 10.48550/arXiv.1805.11394. 

[19] J. Chang, Y. Lu, P. Xue, Y. Xu, and Z. Wei, “ACP: Automatic Channel Pruning via Clustering 

and Swarm Intelligence Optimization for CNN.” arXiv, Jan. 16, 2021. Accessed: Feb. 21, 

2023. [Online]. Available: http://arxiv.org/abs/2101.06407 

[20] “An updated set of basic linear algebra subprograms (BLAS),” ACM Trans. Math. Softw., vol. 

28, no. 2, pp. 135–151, Jun. 2002, doi: 10.1145/567806.567807. 

[21] V. Lebedev and V. Lempitsky, “Fast ConvNets Using Group-Wise Brain Damage,” in 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, Jun. 

2016, pp. 2554–2564. doi: 10.1109/CVPR.2016.280. 

[22] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning Structured Sparsity in Deep Neural 

Networks.” arXiv, Oct. 18, 2016. Accessed: Feb. 21, 2023. [Online]. Available: 

http://arxiv.org/abs/1608.03665 

[23] H. Wang, Q. Zhang, Y. Wang, Y. Lu, and H. Hu, “Structured Pruning for Efficient ConvNets via 

Incremental Regularization.” arXiv, Apr. 15, 2019. Accessed: Feb. 21, 2023. [Online]. 

Available: http://arxiv.org/abs/1804.09461 

[24] F. Meng et al., “Pruning Filter in Filter.” arXiv, Dec. 09, 2020. doi: 10.48550/arXiv.2009.14410. 

[25] A. Vaswani et al., “Attention Is All You Need.” arXiv, Dec. 05, 2017. Accessed: Mar. 05, 2023. 

[Online]. Available: http://arxiv.org/abs/1706.03762 

[26] Z. Guo et al., “Single Path One-Shot Neural Architecture Search with Uniform Sampling.” arXiv, 

Jul. 08, 2020. doi: 10.48550/arXiv.1904.00420. 

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230182

342



[27] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient Neural Architecture Search via 

Parameter Sharing.” arXiv, Feb. 11, 2018. doi: 10.48550/arXiv.1802.03268. 

 

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230182

343


