Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithm
DOLI: 10.54254/2755-2721/2025.LD25185

The Research Progress on Adaptive PID Control Methods in
Joint Space of Robotic Arms

Zehui Zhou

Leeds Joint School, Southwest Jiaotong University, Chengdu, China
zhouzehuidezehui@163.com

The spatial coordination of robotic arm joints represents a significant obstacle in
robotics. Despite its simplicity, traditional PID control is still extensively used owing to its
straightforward implementation and dependable performance in many practical applications.
However, traditional PID control has certain limitations when dealing with nonlinear, time-
varying systems or complex environments. Thus, adaptive PID control effectively enhances
the robustness and adaptability of the system by adjusting the gain parameters online. This
paper reviews recent advances in adaptive PID control for robotic arm joint space, focusing
on approaches such as online parameter tuning, model reference adaptive control (MRAC),
and intelligent optimization techniques. The results show that online adjustment and MRAC
methods have strong robustness in nonlinear and disturbed environments. The intelligent
optimization method performs outstandingly in enhancing accuracy and response speed, but
faces challenges in computational complexity and real-time performance. Moreover, the
limitations of existing research are also discussed, and the future application prospects of
combining deep learning and reinforcement learning with adaptive PID control are explored.
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Adaptive Control (MRAC), Intelligent Optimization

Robotic arms, widely employed in manufacturing, healthcare, and services, are essential to modern
automation. Their efficiency relies on precise, stable control, typically achieved through joint space
control, which guides movement by adjusting joint torques or angles. In addition, it offers low
computational complexity and strong real-time performance, making it especially well-suited for
controlling robotic arms with many degrees of freedom. However, due to the nonlinearity, strong
coupling and external disturbances of the robotic arm system, the traditional PID control method has
certain limitations in high-precision control tasks. To enhance the accuracy and robustness of robotic
arm control, researchers have proposed a series of adaptive PID control strategies, such as sliding
mode adaptive PID, fractional PID, and event-triggered adaptive PID. These methods have
enhanced traditional PID control by improving nonlinear suppression, handling high-frequency
interference, and boosting computational efficiency to better cope with complex, dynamic working
environments. Intelligent optimization methods, such as fuzzy logic, evolutionary algorithms, and
reinforcement learning, are increasingly used to tune PID parameters, hence improving robotic arm
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control adaptability and stability. Despite experimental successes, accuracy, real-time performance,
and robustness in robotic arm control remain challenging. Especially when dealing with factors such
as system nonlinearity, load changes and external disturbances, how to design more efficient and
stable control strategies remains the focus of current research. This paper explores an adaptive PID
control method combining online adjustment, model reference adaptive control, and intelligent
optimization, analyzing its effectiveness in robotic arm control to offer valuable insights for precise
and practical applications.

2. Pid-based approaches for joint space control of robotic arms
2.1. The basic framework of joint space control

By adjusting the driving torque or joint angles, joint space control allows the robotic arm to follow a
predetermined trajectory. It is suitable for real-time control of robotic arms with high degrees of
freedom. Compared to Cartesian control, joint space control operates directly on joint variables with
lower computational complexity. The robotic arm’s dynamics are usually modeled by the Lagrange
or Newton-Euler method, with the Lagrange method preferred for its clarity and ease of analysis.
The kinetic equation is shown below:

t=M(q)§+ C(q,4) + G (q) + tExT (1

where q is joint angular displacement vector, M(q) is inertial matrix, C(q,q) is Coriolis
force matrix, G(q) is gravity, T is control input, or joint driving torque. The dynamic equation of a
robotic arm is highly coupled and nonlinear, requiring control algorithms that carefully consider
these dynamics to maintain stability and accuracy. Among feedback-based methods, PID control
remains a classic and effective approach for stable joint movement.

u(t) = Kpe () + K; [ e(t)ft + Kq 2 )

where e is tracking error, K, , K;, Kgq is proportional, integral and differential gain
parameters. The proportional term adjusts joint torque based on the error, speeding up the response.
The integral control term corrects the system deviation through cumulative error and improves the
steady-state accuracy. The differential term predicts error trends to improve the system’s dynamic
response. PID control, with its simple structure and ease of implementation, is widely used in
robotic arm joint control. However, due to nonlinearity and disturbances, PID alone cannot ensure
high precision. Combining feedforward, adaptive, or model-based methods enhances control and
robustness.

2.2. The application of traditional PID control in robotic arms

Traditional PID control is widely used in joint space control, especially for rigid robotic arms with
high stiffness and well-defined dynamics. In the trajectory tracking task of the SCARA robotic arm,
PID control can keep the steady-state error within 0.1°, but when the load suddenly changes, the
overdrive can reach 10%, increasing the stabilization time [1]. The PID control in rigid robotic arms
is mainly limited by the fact that the fixed gain parameters are difficult to adapt to the changes in
load and motion state, resulting in an increase in overloading and steady-state errors. Elasticity in
flexible manipulators causes nonlinear dynamics and phase lag, leading to low-frequency resonance
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and reduced PID effectiveness. Under varying loads, steady-state errors can reach 0.5°, five times
higher than the 0.1° typical of rigid robotic arms[2]. In the grasping task of the flexible robotic arm,
the grasping success rate of the traditional PID control was only 76%, while it increased to 91%
after adopting the adaptive PID, indicating that the flexible robotic arm requires a more adaptive
control strategy [3]. Its main limitation is that stiffness variations compromise control accuracy. The
fixed-gain PID is prone to cause low-frequency oscillation and reduce the stability of the system.
The rigid manipulator, governed by inertia and Coriolis forces, achieves stable performance through
fixed-gain PID control. Flexible manipulators suffer tracking accuracy degradation from load-
induced stiffness variations caused by elastic deformation and nonlinear dynamics. While fixed-gain
PID proves inadequate for such cases, flexible arms benefit more from adaptive control or model
compensation strategies to improve both accuracy and robustness.

3. Classification and principle of adaptive PID control methods
3.1. The adaptive PID control based on online parameter adjustment

Online parameter tuning enhances the robustness and tracking performance of control systems in
nonlinear and disturbed environments by real-time updating the gain parameters ( K,,, K;, Kg) of
the PID controller. Early methods employed the gradient descent approach to dynamically optimize
parameters by minimizing the control error function, but their slow convergence and tendency to get
stuck in local optima limited their application in rapidly changing scenario [4]. To improve update
efficiency, model predictive control (MPC) mechanisms have been introduced in recent years,
applying its rolling optimization concept to PID parameter adjustment, making the control more
forward-looking and adaptive [5]. In a six-degree-of-freedom robotic arm experiment, this strategy
reduced the root mean square tracking error by approximately 35%, greatly improving the system’s
response speed and control accuracy. Besides, the recursive least squares (RLS) method has also
been used for online identification of system dynamic characteristics and guiding real-time PID
parameter updates, effectively enhancing the stability and real-time performance of parameter
adjustments [6]. This method suits high-frequency disturbances. However, MPC demands high
computational power, whereas RLS needs noise filtering for robustness.

3.2. PID regulation based on Model Reference Adaptive Control (MRAC)

Model reference adaptive control (MRAC) constructs an ideal reference model and dynamically
adjusts the controller parameters based on the error between the actual system output and the model
output, making the system behavior approach the reference model. It is suitable for control objects
with uncertainties or time-varying characteristics[6]. In the traditional MRAC-PID architecture, the
PID controller is embedded in the adaptive framework, and the adaptive law is constructed based on
Lyapunov stability theory, effectively enhancing the stability and tracking performance of the
system under nonlinear disturbances. Experiments show that this method can significantly improve
the control accuracy of the robotic arm in the presence of friction and modeling errors. However,
this strategy heavily relies on the system dynamics model and its performance degrades when faced
with unmodeled dynamics or major parameter variations. To enhance the adaptability to model
uncertainties, the neural network enhanced MRAC-PID method has been proposed, which embeds a
neural network to estimate and compensate for unmodeled dynamics in real time, improving control
accuracy and system robustness [7]. In robotic arm grasping experiments, this method maintained
+0.1° angle accuracy despite around 20% model error, showing strong adaptability to complex
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conditions. Additionally, the distributed MRAC method independently designs reference models for
each joint of the multi-joint system, achieving distributed adaptive regulation, reducing the
computational burden of centralized processing and improving the scalability of the system [8]. This
strategy is particularly suitable for high-dimensional systems such as multi-degree-of-freedom
robotic arms and modular robots. Although MRAC and its variants provide strong adaptability and
theoretical stability, they depend on dynamic models and need parameter tuning at initialization.
Besides, extensions involving neural networks or distributed architectures increase computational
complexity, impacting real-time performance and hardware demands [8]. Therefore, in resource-
limited or model-scarce scenarios, applying MRAC requires careful evaluation.

As control systems grow more complex, fixed-parameter PID controllers struggle with nonlinearity
and changing conditions, hence limiting accuracy and response speed. To improve adaptability and
robustness, intelligent optimization has been applied to replace or support traditional tuning, driving
the development of adaptive PID strategies. Fuzzy logic control dynamically tunes PID gains using
error and its rate of change, requiring no precise model and effectively handling nonlinear systems
[9]. This method achieved sub-millimeter accuracy and improved response in trajectory tracking,
ideal for industrial settings with known structures yet complex models. Meanwhile, evolutionary
algorithms like genetic algorithms (GA) and particle swarm optimization (PSO) perform offline PID
parameter optimization by simulating natural selection or group collaboration to find global optima
and avoid local traps. By mimicking natural selection or group collaboration, they explore complex
search spaces to find global optima and avoid local traps. Due to high computational costs and
lengthy optimization, these methods are unsuitable for real-time updates and are primarily used for
parameter tuning before controller deployment. To address the real-time issue, reinforcement
learning (RL) has been applied to the online optimization of PID parameters, capable of achieving
adaptive control in complex environments without the need for system models [10]. By introducing
the deep deterministic policy gradient (DDPG) algorithm, the controller can learn the optimal
parameter strategy through interaction with the environment, achieving precise control with an
overshoot of less than 5% under dynamic loads. Despite strong generalization and adaptability,
reinforcement learning requires extensive data and computing power, with convergence stability still
challenging in practice.

To improve accuracy and robustness under specific conditions, adaptive PID control adopts targeted
strategies. Nonlinear disturbances are better suppressed by sliding mode adaptive PID, high-
frequency interference is more effectively managed by fractional-order PID, and computational
efficiency is increased through event-triggered adaptive PID. Sliding mode adaptive PID merges
sliding mode control’s robustness with PID’s simplicity, making it ideal for systems with strong
nonlinearity and significant external disturbances. This method introduces a switching function in
the control law, enabling rapid suppression of system disturbances and enhancing the adaptability to
model uncertainties [11]. Although this method has good tracking performance, due to the frequent
switching of control inputs, it is prone to high-frequency jitter phenomena. To alleviate this problem,
boundary layer technology is introduced in sliding mode control, smoothing the switching function
to effectively reduce the amplitude of high-frequency jitter. Experimental results show that this
improved method can reduce the end-jitter amplitude of industrial robotic arms by approximately
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60%, while maintaining robustness and significantly improving the stability and service life of the
actuator [12]. Fractional-order PID control (FOPID) expands the parameter dimension of traditional
PID through the introduction of fractional calculus operators, enabling the controller to have more
flexible dynamic response capabilities [13]. This method outperforms integer-order controllers in
suppressing high-frequency disturbances and system robustness. Recently, FOPID has integrated
adaptive mechanisms with online order adjustment, effectively improving the system’s dynamic
adaptability [14]. In the vibration control experiments of flexible robotic arms, this method achieves
a system energy attenuation rate of up to 98%, significantly accelerating the vibration convergence
speed and improving control smoothness, especially suitable for complex systems such as elastic
linkage structures and compliant robots. To address the issue of excessive computational resource
consumption in traditional adaptive PID control, event-triggered adaptive PID control strategies
have emerged. They trigger parameter updates only when the system error or state change exceeds
the set threshold, avoiding redundant calculations caused by periodic updates [9]. This method uses
an error-threshold trigger, adjusting gains only when errors exceed a set range, reducing controller
load. In high-precision servo experiments, it cut CPU usage by ~40%, boosting efficiency while
maintaining accuracy, ideal for resource-constrained settings like embedded and edge computing.

4. Performance comparison and development challenges of adaptive PID methods
4.1. Performance comparison of different methods

Table 1 summarizes the performance of several common adaptive PID methods across convergence
speed, robustness, computational complexity, and applicable scenarios. These methods demonstrate
marked differences in each aspect and are suited to different types of control tasks.

Table 1. Performance comparison of different adaptive PID methods

Convergence Robustn Computation L

Method Speed ess Complexity Application

Onlm'e parameter Moderate Moderat Low Changing load, low speed

adjustment e
MRAC-PID Fast High High High accuracy, known model
Fuzzy Adaptive PID Slow High Moderate Nonlinearity, external disturbance
Intelligent Optimization Moderat . . .
(GA/PSO) Very slow . Very high Offline parameter tuning
Sliding mode adaptive PID Fast VF:ry moderate Strong dlsturbancF: and high robustness

high requirements

As shown in the table, MRAC-PID excels in convergence speed and robustness, making it well-
suited for precise control in systems with known models. However, its computational complexity is
relatively high, and it has high requirements for the accuracy of the reference model. The fuzzy
adaptive PID controller is notably robust, particularly in handling nonlinear systems and strong
external disturbances. However, its slower convergence speed limits its effectiveness in high-speed
applications. Ideal for high-robustness and disturbance-rich environments, sliding mode adaptive
PID must still address the drawback of chattering. Intelligent optimization methods, such as GA and
PSO, can provide better offline parameter configurations, but their computational complexity is too
high to meet the requirements of real-time control. Further studies have confirmed the performance
variations among different methods. For example, the online parameter adjustment, MRAC-PID,
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and fuzzy adaptive PID methods have respectively improved accuracy, reduced overshoot, and
enhanced precision in robotic arm trajectory and load control experiments [5,7,9].

Technical challenges still persist in adaptive PID control methods. Firstly, a major limitation is the
reliance on accurate dynamic models, particularly in methods like MRAC, online parameter tuning,
and sliding mode control, which restricts their effectiveness in complex or uncertain environments.
Secondly, intelligent optimization methods such as genetic algorithms, particle swarm optimization,
and deep deterministic policy gradient can boost control performance, but their high computational
demands make real-time application difficult, especially in embedded systems. Furthermore, current
research mainly targets single metrics like tracking error, neglecting multi-objective optimization of
energy efficiency and smoothness vital for industry. Future trends include deep learning-based
adaptive PID control for model-free online adaptation in high-dimensional nonlinear systems [15].
They also involve integrating reinforcement learning methods such as Q-learning and DDPG with
PID control to optimize gain adjustments for improved accuracy in dynamic environments [16].
Additionally, there is growing emphasis on multi-objective optimization using Pareto optimality to
balance error, energy consumption, and vibration [17]. Finally, development focuses on adaptive
PID architectures for emerging platforms such as flexible robotic arms and redundant degree-of-
freedom systems to enhance adaptability and precision in complex settings.

By incorporating online tuning, intelligent algorithms, and advanced control theories, adaptive PID
control greatly improves the adaptability and precision of robotic arm joint space control. However,
model dependence, computational complexity, and multi-objective optimization remain challenging
issues that need to be addressed. In the future, the integration of deep learning and reinforcement
learning into intelligent PID control is anticipated to transcend traditional frameworks, offering
innovative approaches for controlling robotic arms in complex and dynamic environments. Though
adaptive PID control has progressed from simple parameter tuning to multidisciplinary integration,
its effectiveness in complex scenarios remains limited by challenges in algorithm generalization,
computational efficiency, and multi-objective optimization. With the advancement of deep learning
and edge computing, intelligent adaptive PID is expected to evolve into a fully integrated system
that unifies perception, decision-making, and control, thus offering essential technical support for
high-end applications like surgical robots and robotic arms used in space exploration. In addition,
the swift growth of open-source platforms like ROS-Control is set to accelerate the deployment of
algorithms and drive the intelligent transformation of robotic systems in the Industry 4.0 era.

[1] Sciavicco, L., & Siciliano, B. (2000). Modeling and Control of Robot Manipulators. Springer.

[2] Spong, M.W., et al. (2006). Robot Modeling and Control. Wiley.

[3] Liu,J., etal. (2019). Deep Learning-Based Adaptive PID Control for Flexible-Joint Robots. [IEEE/ASME
Transactions on Mechatronics, 24(3), 1234-1245.

[4] Astrom, K.J., & Hagglund, T. (1995). PID Controllers: Theory, Design, and Tuning. ISA.

[5] Zhang, Y., et al. (2020). MPC-based adaptive PID for robotic manipulators. IEEE Transactions on Industrial
Informatics, 16(7), 4321-4330.

[6] Chen, L., etal. (2019). Online parameter identification for PID control using RLS. Mechatronics, 59, 102-112.

124



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithm
DOI: 10.54254/2755-2721/2025.LD25185

[71 Wang, H., et al. (2021). Hybrid MRAC-PID with neural compensation. IEEE/ASME Transactions on Mechatronics,
26(3), 1565-1574.

[8] Liu, Z., et al. (2022). Distributed MRAC for multi-joint robots. Robotics and Autonomous Systems, 148, 103912.

[9]1 Li, Y., etal.(2018). Fuzzy PID control for robotic manipulators. IEEE Transactions on Industrial Electronics, 65(6),
5069-5077.

[10] Wang, X., et al. (2022). DDPG-driven PID optimization for dynamic loads. IEEE Transactions on Neural Networks
and Learning Systems, 33(8), 4021-4033

[11] Efe, M.O. (2008). Sliding mode control with PID sliding surface for robotic manipulators. Mechatronics, 18(8),
407-414.

[12] Zhou, J., et al. (2021). Smooth sliding mode PID with boundary layer. ISA Transactions, 115, 89-101.

[13] Podlubny, 1. (1999). Fractional-order systems and PID controllers. IEEE Transactions on Automatic Control, 44(1),
208-214.

[14] Ma, R., et al. (2023). Adaptive fractional-order PID for flexible manipulators. Nonlinear Dynamics, 111(2), 1347-
1362.

[15] LeCun, Y., et al. (2015). Deep learning. Nature, 521(7553), 436-444.

[16] Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning: An Introduction. MIT Press.

[17] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

125



