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Abstract. Catalan numbers, a classical sequence in many combinactorics problems, are
defined as    and have diverse applications, such as interpreted as Dyck
paths. This paper mainly explores the higher-dimensional generalizations of Catalan
numbers, including the higher-dimensional Catalan numbers   

and Fuss-Catalan numbers  . We revisit Zeilberger's reflection principle
proof for higher-dimensional Catalan numbers and present a novel combinatorial proof
using ordered Catalan sequences. Additionally, we combine Fuss-Catalan numbers with
higher-dimensional paths, deriving a product formula for d-dimensional cases. The paper
also generalizes the coefficient of Fuss-Catalan numbers to more real numbers and
establishes bijections between m-ary trees and polygon division problems, providing their
enumeration via Fuss-Catalan numbers. Our results extend the understanding of Catalan-
type numbers and their combinatorial interpretations, highlighting connections across
multiple mathematical domains.These results enhance our understanding of Catalan-type
numbers and construct deep connections across multiple mathematical domains, including
algebraic combinatorics, probability, and discrete geometry. The generalizations presented in
the article offer new tools for solving complex enumeration problems and provide
theoretical foundations for future research in combinatorial mathematics.\

Keywords: Catalan numbers, Fuss-Catalan numbers, generalization

1. Introduction

As an old special combination number, Catalan numbers are related to many kinds of combinatorial
problems and other counting problems in mathematics. Its expression is as follows:

(1)

The most common Catalan numbers have many combinatorics interpretions like binary trees,
triangulations, binary parenthesizations, plane trees, Dyck path, ballet sequence and so on. You can
see more detailed applications in Stanley's lectures [1].
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In 1915, MacMahen [2] firstly solved the n-ballot problem, and proposed the higher-dimension-
Catalan numbers, and later in 1983, Zeilberger [3] solved this problem by a new algebraic
combinatoarics way called the reflection principle. The expression they got is:

(2)

The reflection principle mainly uses some properties between the symmetric group and its action
on the Dyck path. The main lemma he got was:

(3)

where    is a permutation,    is the path from    to    which does not belong to
the good one(or called dyck path), and    means the point   .
In the article, Zeilberger used the lemma with some other transforms and finally got the results
beautifully. We will review the details of his proof in the next sections.

Also, some other generalizations of Catalan numbers were proposed like q-Calatan numbers,
which was introduced by Fürlinger and Hofbauer [4], using the idea of q-analogue:

   , to get a more complex expression:

(4)

It can be related to some more complex Dyck path problem and other counting problems.
Fuss-Catalan numbers is another generalization, which was proposed by Fuss in 1791 and Raney

[5] later(which is much earlier than the formally proposing of Catalan numbers), its expression is as
follows:

(5)

This kind of generalization is also related to some more restricted Dyck path, specifically, it
counts the number of ways from    to   , which stays weakly below the line  

 . It can also be called as   

2. The main results

We may review the detailed proof of Zeilberger, and try to propose a new proof of the formula for
the higher-dimension-Catalan numbers, also, give two generalizations of Catatlan numbers.

2.1. Zeilberger's proof

Like the introduction says, Zeilberger's proof mainly use the idea of permutation groups' action on
the path   ,    denoting the point   .

We will call a path from    to    is good if it never touches the hyperplane   ,
and denote the set of good paths by   , while we call the others bad one, denoted as  

 .
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Let us consider doing something to all the bad ones. If some path touches the hyperplane in their
walk to the final point   , we need to reflect the path before the first touching point
with respect to the hyperplane   , and we claim that the reflection is well-defined.
Since this progress is not written in the Zeilberger's article, so we decide to make a detailed
description.

In order to get the reflection point of any point    on the path, we could firstly find the point   

on the hyperplane    such that   . Assume   , and

denote   , then   . Then,   ,
where "..." means any numbers. Since any point on the hyperplane can be written in   's form, we
can assume that any vector on the this hyperplane has form of   , and  

 . In order to satisfy the    condition, the "..." in the    must be all zero.
And they need to satisfy the equality:   , we can get  

 . Then we just get the reflection point   . Now,
we get the well-defined reflection action, and the whole bad path from  

  turns into  
 , since    is a permutation in  

 , and the above reflection operation can be seen as adding a transposition   on it.
Therefore, we get a bijection from an even permutation to an odd one, since the transposition
changes the sign of permutation. Simply speaking, we get the following equality, just as said in the
introduction:

(6)

Let    denote all the paths, we easily see that   , since the
point    (   is not id) already exceeds some hyperplane.

While for any   ,\    and   , it is well known that

(7)

What we want to get is the number of  , let us calculate it by the above lemma.

(8)
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The final step to calculate the determinant is a interesting exercise like the VanderMonde
determinant.

2.2. Our new combinatorics proof

Definition: ordered Catalan numbers
Consider a sequence with    elements and    groups, every group has  

  elements. Then we consider these two rules:
rule2.2.1.
We denote the numbers of elements in the first k elements from    be   . Then if the

sequence is an ordered Catalan numbers, it satisfies that   
for all of the    belongs to   .

rule2.2.2.
For the    from the    group, if   , then    must be before   . And for

the    belonging to the   , if   , then    must be before the   . Then we call the
sequence that follows the two rules above the "ordered Catalan numbers" and we denote it as  

  then we have the lemma2.1.
Lemma2.1.
The ordered Catalan numbers satisfy that:   
Proof.For the d-dimensional Catalan numbers, it only needs to satisfy rule one and that the group

   is arranged. Also, because in group    we can choose any arrangement of  
 , so we can get an arrangement that satisfies the rule of d-dimensional Catalan

numbers, then we just get   
Let us calculate the   . It is easy to see that the arrangement of these    elements is  

  and we call a process which makes the group    satisfy rule 1 and rule 2 as
"operation k". Also, we denote that the ratio of all qualified permutations before operation k to all
qualified permutations after operation k is   , then   .

We claim that   ,    for   . Firstly for   , it's obviously that in the  
  permutations, there is only one satisfying the rule 2. We only need to consider   , while it

obviously satisfies the rule 1, hence   . Let us prove the condition for    by induction.
For   , we can consider such method to make it satisfy the rule 1 and rule 2. Firstly consider
the first element in    which is    and the n elements in    which are   ,
according to rule 1, the    must be before all of the elements in   .Additionally, for the  

 , there is only one arrangement which satisfies the rule 2. So, for the   
elements, there is only one qualified arrangement. Then consider the    and  

 , for these    elements, we need to find out the ratio of the qualified
permutations to all permutations, thus we have lemma2.2.

lemma2.2.
Let's consider all of the permutations of    elements, with n elements from group    and n

elements from   . Suppose    is the number of all possible permutations that satisfy the
rule2.2.1,    is the number of permutations that satisfy the condition that there is at least one
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element of the group    lies before the elements of the group   . Suppose    equals   , then
we claim that   .

proof.
Let us prove it by gap filling method. Firstly, we denote the elements from group    as    and

the elements from the group    as   . Because the permutations satisfy that before all of the
elements from   , there is at least one elements from   , so we only need to consider such a
sequence:    with an    followed by n   . And for the rest of the n-1   , we just need
to insert them into this sequence, and we can get the number of all possible permutations satisfying
before all the    there is at least one    is   =  , and the numbers of the permutations
satisfy the rule 1 is the Catalan numbers in two dimensions, which is   =  . So we just get

the ratio is   =  .
Let's return to the original problem. Because the elements in the    and    has been arranged

to follow rule 2, we can ignore the order relation of the elements in the group. Because the    is
before the   , so before the elements from the group    there is at least one
elements from   . Hence we can use Lemma2.2 and we can find out that for the sequence  

  and   , the qualified permutations to the possible permutations is  
 . By the analysis above, we can get that    satisfy the formula   .
And then we suppose that       satisfies the formula. I'd like to show that the    also

satisfy the formula.
Because the sequence    has been arranged to satisfy the rule 1 and rule 2, so for

the rule 1, we only need to make sure that   , so the first elements of the group   
should before all of the elements of the   . Because the the first    groups satisfy the rule 1, the
first element of the    should before all of the elements of    if   . Hence the order of the
elements of the first    groups should be   .

Now let us consider the elements of the first elements of the first    groups and the n elements
from the group   . Because in all of the arrangements of these    elements has only one
qualified and the first elements of the first    groups has been arranged, so the ratio of qualified
arrangements to the all possible arrangements is   . While for the rest    and  

 , the ratio of the qualified arrangements to the possible arrangements of
these    elements, according to lemma 2.2, is   .

Therefore,   =   =  .

Then, because we have   ,   . With
the relationship between ordered Catalan numbers and the d-dimensional Catalan numbers, we get
the formula of d-dimensional Catalan numbers:

(9)

2.3. Combination of two kinds of Catalan numbers

What we try to do in this section is to combine the Fuss-Catalan numbers and higher-dimension
Catalan numbers. The Fuss-Catalan number has the form:
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(10)

This number can be interpreted as: the path from    to    under the line  
 , a generalization of usual Dyck path. We have found an article written in Chinese [6],

which considers Fuss-Catalan numbers for high-dimensional paths. The article presents the story in
3-dimensions. For the restriction:

(11)

it can be seen that the path from    to    is   . Since each path
can be first projected to the   -plane, and the number of paths in this plane is just the original Fuss-
Catalan numbers:   , and then cut the path along the    direction, it can be seen as the original
path of the Fuss-Catalan numbers   .

The following is a visual picture about the above proof of the three-dimensional restricted Fuss-
Catalan numbers:

Figure 1. Visual picture for the three-dimensional restricted Fuss-Catalan numbers

We may naturally consider the high-dimensional cases as the three-dimensional one. We will first
consider the four-dimensional case for simplicity.

Consider the path from    to    in    with the restriction that:

(12)

We may just project the    to   , then the number of paths satisfying the
condition in    just equals to the above 3-dimensional case,

  . Then we cut the path along the   -directions, it is easy to see that the number of
ways is just   , so the whole number is   .
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Therefore, for d-dimensional case,   ,    and   , paths from  
  to    with the condition:

(13)

the number is just   .

Besides, we are also interested in the ratio between higher-dimension Catalan numbers and the
above higher-Fuss-Catalan numbers.

And for simplicity, we firstly see the    case in three dimensions. Let    denote their ratio.

= (14)

= 

It's clear that as   , the ratio   . Also, in the n-dimensional case, the ratio will go to
0 as   .

2.4. A generalization for the coefficient of Fuss-Catalan numbers

For the Fuss-Catalan numbers, we consider the condition that    (just like the above
passages told, we denote the numbers of elements in the first k elements from    be   ) and
we call the    as the coefficient of Fuss-Catalan numbers. According to the definition of the
coefficient of Fuss-Catalan numbers   , we can find that   . For the usual Fuss-Catalan
number   ,    is always a integer. We may consider to generalize it into real numbers.

Firstly, let us consider a variant type of the counting problem for Fuss-Catalan numbers: we can
consider the paths on a Cartesian plane, start from the point    and move to the point   ,
   are integers and the paths should follow two rules below :

Rule2.4.1.
We can only move one unit of distance in the    or    direction at a time.
Rule2.4.2.
All of the paths shouldn't go above the line that passes through the point (0,0) with slope   . We

call this line a restriction line.
According to the definition that   , we can see that the numbers of the paths

satisfy the two rules is the Fuss-Catalan numbers that with the total elements for    is    and the
total elements for    is    with the coefficient   .
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We claim that, for   ,    where   

means move n steps in    direction in total and move nm steps in    direction in total and under the
restriction line with slope   .

We can notice that the numbers of the qualified paths only depend on the integer point under the
restriction line, the numbers of the paths changes if and only if the change of restriction line adds or
mines the integer point, so we are interested in the coordinate of the first added integer point as the
slope of the restriction line increases. We claim that the coordinate of the first added point is  

 .
For the proof, we consider drawing all the lines with the same slope as   , but start from

the point  , which is one step up to the below one, like the following
figure:

Figure 2. Lines with the same slope starting from different points

It is clear that there are no integer points between adjoint two lines, so for all the integer points
beyond the    in the same line, as the    become bigger, the slope between the point and the start
point will be smaller. So, we just need to avoid adding the last integer point  

  on the   , which obviously guarantees that any lines will not add new
points if its slope is smaller than   .

Therefore, we get the equality:   if   , since

there are no new points added.
And now we may consider the case if   .
We can divide the path into two sorts: one goes through the point   ,

the other do not pass the added point. Then, it is easy to see that the number of paths passing    is
the Fuss-Catalan number   , because before we passes   , we have to reach at
the point    and the qualified paths from    to    is  

 . While we pass the point   , there is only one way to the point   , so
the numbers of the qualified paths which passes the point    is  
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 . For the other case, it equals the original number   .
Therefore, the whole number of this kind of generalization is

(15)

This way, we have generalized the coefficient of the Fuss-Catalan numbers into a real numbers
interval. Using the same method, if we can find the next added integer point, then we can generalize
the coefficient into all of the positive real numbers.

3. Some corollaries and combinatorics

Catalan numbers have been shown to have a link with binary trees. We are now interested in the m-
ary trees and some counting problems' bijection in m-analogue cases.

3.1. M-ary trees

The binary trees problem can be described as follows: How many different configurations are there
for a binary tree with n nodes where each non-leaf node has exactly two children? The m-ary tree is
similar to it.

We will finally find that the number of m-ary trees with n-node is just the Fuss-Catalan number:  
 . The key of the proof is Raney’s lemma, and the following proof is leant from

math.stackchange [7].
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Σn ⟨x0, … ,xmn⟩ xk 1 1 − m

1 mn + 1

n 1 − m (mn+1
n ) mn + 1

n 1 − m 1
mn + 1

|Σn| = 1
mn+1 (mn+1

n )
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(19)

where    range over non-negative integers.
Suppose that   . Clearly   . If  

 , let    be the maximal number less than    such that    for  
 . It’s not hard to check that   , and that each of the sequences

(20)

belongs to some   . This means that there are natural numbers    such that  
 , and    for   , and evidently

(21)

so   .
Conversely, if   , where each   , and    for   , then the

sequence obtained by appending    to    is in   . The correspondence is
bijective, so the equation 3.4 is established.

Now the equation 3.2 and equation 3.4 are the same recurrence relation, and   , since the
only member of    is   , so if we set   , then it follows immediately that

(22)

which are exactly the fuss-catalan numbers.

3.2. Bijections between counting problems

Like the original catalan numbers, fuss-catalan number can discribe a lot of combinatorics counting
problems.

For example, like the generalized dyck path and m-ary trees, these two counting problems
obviously get the same number,   . We will talk about another counting problem in the following
subsection.

3.3. Division problem

Catalan numbers count the number of ways to divide an   -gon into    triangles using non-
crossing diagonals. We try to count the number of ways to divide an    -gon into     

  -gon using non-crossing diagonals.
Lemma 3.2

|Σn+1| = ∑k1+...+km=n |Σk1 | |Σk2 | … |Σkm |

k1, … , km
σ = ⟨x0, … ,xm(n+1)⟩ ∈ Σn+1 xm(n+1) = 1 − m

sk = x0 + … + xk nj m (n + 1) snj
= j

j = 1, … ,m nm = m (n + 1) − 1

⟨x0, … ,xn1⟩, ⟨xn1+1, … ,xn2⟩, … , ⟨xnm−1+1, … ,xnm
⟩

Σk k1, … , km
n0 = mk1 nj − nj−1 = mkj + 1 j = 2, … ,m

m (n + 1) − 1 = nm = mk1 + ∑m
j=2 (mkj + 1) = m(1 + ∑m

j=1 kj) − 1,

∑m
j=1 kj = n

∑m
j=1 kj = n kj ∈ N σj ∈ Σkj j = 1, … ,m

1 − m σ1σ2 … σm Σn+1

|Σ0| = 1

Σ0 ⟨1⟩ C
(m)
0 = 1

C
(m)
n = |Σn| = 1

mn+1 (mn+1
n ) = 1

(m−1)n+1
(mn

n )

C
(s)
n

n n − 2
((m − 1)n + 2) n

(m + 1)
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Dividing    -gon into       -gon using non-crossing diagonals can have  
  different ways.

proof
We may use the mathematical induction.
Let   , we need to divide an    -gon into an    -gon. Obviously, there is

only one way, because   .
Assume the statement holds for some arbitrary   , that is:    represents the ways that

dividing an    -gon into       -gon.
We will now prove that if the statement holds for   , it must also hold for   .
Consider a newly-added vertex    of the polygon, diagonals that consist of    and other

vertexes divide the polygon into two parts: an    and an    -gon.
The    -gon need to be divided into       -gon, which has    different

ways.
   has    choices in order not to have crossing diagonals. As for each newly-added

vertex, the extra sizes have    choices, but when divided into n parts, repeated ways should
not be considered. There are overall    extra vertexes, which needs to be counted.

It's worth mentioning that internal edge changes from    to   ,
so a coefficient is needed.

Then we will prove the recursion relationship

(23)

By the principle of mathematical induction, we have shown that the statement holds for all  
 .

Therefore, the lemma is proved.
From another perspective, the division problem is also the Fuss-Catalan number:   .
To divide an    -gon into       -gon, we can choose one side, and find the

first    -gons that contain this side. Then the    -gon will divide the original polygon
into    smaller regions, with each region corresponding to an    -gon, which
satisfies:

(24)

Since one    -gon has been used, there are only    left.

((m − 1)n + 2) n (m + 1)

C
(m)
n

n  =  1 (m + 1) (m + 1)

Cm
1 = 1

k  ≥ 1 C
(m)
n

((m − 1)n + 2) n (m + 1)

n n + 1
A A

(m + 1) − gon ((m − 1)n + 2)

((m − 1)n + 2) n (m + 1) C
(m)
n

A mn+1
mn−n+1

mn + k

m − 1
(m − 1)n + 1 (m − 1) (n + 1) + 1

(m−1)n+1
(m−1)(n+1)+1

× m∏m−1
i=1

mn+i
mn−n+i

× C
(m)
n

= (m−1)n+1
(m−1)(n+1)+1

× m∏m−1
i=1

mn+i
mn−n+i

× 1
(m−1)n+1

(mn
n

)

= 1
(m−1)(n+1)+1

× m∏m−1
i=1

mn+i
mn−n+i ×

(mn)!

n!((m−1)n)!

= 1
(m−1)(n+1)+1 ×

(mn+m)(mn+m−1)…(mn+1)
(n+1)(mn−n+m−1)…(mn−n+1) ×

(mn)!
n!((m−1)n)!

= 1
(m−1)(n+1)+1

× (m(n+1))!
(n+1)!((m−1)(n+1))!

= 1
(m−1)(n+1)+1

× (m(n+1)

(n+1)
)

= C
(m)
n+1

n  ≥ 1

C
(m)
n

(m (n − 1) + 2) n (m + 1)

(m + 1) (m + 1)

m ((m − 1)ni + 2)

n1 + n2 + … + nm = n − 1

(m + 1) n − 1
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We may denote the    as the number of ways that divide an    gon into     
  -gon. Then it’s clear that

(25)

while the    are the regions that need to be further divided.
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