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Generating images with dynamic expressions has become a key component of the
social media industry. To enhance the realism, it is crucial to remove the potential distortion
in the face image. Unfortunately, videos produced by PIrenderer often exhibit facial blur due
to inadequate segmentation between foreground and background. In this paper, GrabCut and
MODNet are used to post-process the videos generated by Plrenderer and then fuse them.
Our proposed method can guarantee to reduce the influence of background on the face when
generating dynamic expression videos. These post-processing steps optimize dynamic facial
expression rendering, mitigate the face distortion problem, and ultimately produce more
realistic video output.

face-modeling, image generating, GrabCut, ModNet, postprocessing.

With the continuous advancement of artificial intelligence (Al), the entertainment industry has
entered a new era. Digital entertainment, including video games, streaming services, music
platforms, and social media, has become an integral part of people’s lives. Among them, video
games dominate as the main form of entertainment. In games, it is an important step to generate
videos of faces with changeable expressions. However, the existing models will produce facial
distortions when processing images.

Several studies have contributed to the development of Al-driven facial modeling and image
transformation techniques. Hertzmann et al. introduced “IMAGE ANALOGIES” a method that
synthesizes unfiltered and filtered images to generate new target images, eliminating the need for
users to manually adjust multiple filter settings [1]. Zhu et al. introduced it in ICCV 2017 paper of
theirs [2]. (ICCV 2017) effectively removed the rain streaks in a single image with a solution called
bi-layer optimisation model, to improve image clarity [3]. Bansal et al. developed a data-driven,
unsupervised video re-targeting method that transfers content while preserving style characteristics.
For instance, their model could transfer the content of John Oliver’s speech to match the style of
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Stephen Colbert, Utilizing spatial and temporal data alongside adversarial loss for content transfer
and style retention [4]. Wiles et al. explored both supervised and unsupervised methods for facial
modeling. Supervised approaches rely on ground-truth data sets to learn variations such as lighting
and pose, though they can be costly and subjective [4]. In contrast, self-supervised and unsupervised
methods aim to automatically learn these variations, maximizing mutual information, or predicting
future video frames. Additionally, CycleGAN has been used to transform images between domains
while preserving semantic similarity [4]. Tewari et al. investigated the relationship between edit
magnitude and loss, finding that smaller edits result in lower losses, whereas larger modifications
increase loss values. Their research demonstrated that expression control networks perform better at
maintaining other facial properties compared to control networks, which struggle with pose
restoration [5].

However, current Al-generated facial models often suffer from two significant issues: dynamic
blur and facial distortion. These problems can cause character expressions to appear unnatural or
uncontrollable, negatively impacting user experience. By building upon these advancements, our
project seeks to refine Al-driven face modeling, reducing issues such as blur and distortion while
improving expression accuracy. Our ultimate aim is to create a system that delivers high-quality
facial models tailored to user expectations.

To address this challenge, our team aims to develop a model that can generate realistic facial
models more efficiently. While existing models offer similar functionalities, there is substantial
room for improvement. Our goal is to enhance face modeling techniques to better align with user
needs, ensuring greater realism and stability in facial expressions.

Our model is built upon Plrenderer [6], which relies on a 3DMM-based parametric design. This
approach depends heavily on the accurate decoupling of 3DMM parameters and often suffers from
suboptimal efficiency. To mitigate these issues, we introduce additional post-processing steps—
specifically, segmentation and fusion—to address the shortcomings of Plrenderer. Experimental
results demonstrate that these enhancements significantly improve the realism of the generated
videos.

X2Face a self-supervised network architecture that manipulates the generated faces based on the
audio input. However, this model does not make assumptions about the pose and identity of the
person, which may lead to inaccurate and natural output results in some extreme cases [4].
Perceptually A3 fine-tune the renderer to improve the image performance. Although it solves part of
the background interference, it still affects the quality of the final result [7]. First-order motion
model for image animation. This model did not locate any keypoints in the video when the input
video pose was significantly different from the initial pose. This indicates that the keypoint detection
ability of the model is insufficient under complex actions [8]. Deferred Neural Rendering generates
images based on modified pose, which is a very good idea, but it has limitations. This model is only
applicable to a specific topic, and DNR needs to be trained independently to generate videos of
different actors, which leads to the problem in different application scenarios. It may be necessary to
adapt the model to new input data [8]. OneShotFN, the model implements partial free perspective
synthesis, but based on the existing 2D perspective, OneShotFN only synthesizes from the original
perspective, which cannot meet the user’s demand for a new perspective [8]. VASA-1 deals only
with the upper body of the human body, a limitation that affects its ability to apply to parts of the
scene, and while the model uses The absence of a more explicit facial model in a 3D latent
representation may result in visual anomalies [9]. PerceptualCh has achieved some success in
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generating dialogue head videos for the model. However, the renderer used by PerceptualCh has
some defects in preserving character identity and resisting background interference, which leads to
the lack of accuracy in the background of video generation [10]. Magic Animate performs relatively
well in the foreground region when dealing with the area where the portrait is located, but its overall
quality is affected due to its insufficient background information processing for the model [11].

3. Our model

We initially employ Plrenderer for video generation; however, its output suffers from significant
facial distortions. To address these issues, we subsequently apply GrabCut and ModNet for video
segmentation, and the fusion algorithm is uesd to fuse the segmented features. This fusion process
considerably enhances the overall quality, effectively reducing both facial distortions and ghosting
artifacts in the characters. In the following sections, we provide a detailed examination of each
individual module.

3.1. Pirenderer

Plrenderer is a pretrained model which can parse out the 3DMM parameters given a driving face,
using it to predict flow for a source face. Specifically, transferring only the expression from the
driving face during inference by replacing the expression parameters on the source face with those
on the driving one. However, the Method s mentioned above are sensitive to the accuracy of these
3DMMs [6].

3DMMs are known to be not particularly accurate for face reconstruction due to the limited
number of Blend shapes. They have difficulty delineating facial details of the shape, eye, and mouth
of the face, which may eventually have side effects on the synthetic results [12]. The details can be
found in [6].

(a) Image with seeds. (d) Segmentation results.
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Figure 1. Principle of GrabCut [15]
3.2. Background segmentation

To address these limitations and improve the fidelity of our generated outputs, we integrate
additional segmentation techniques that are better suited for capturing fine details.
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In this article, We use the grabCut [13] and ModNet [14] (Matting Objective Decomposition
Network) Separate the foreground and background of the video generated by Plrenderer, grabCut is
a method that uses Gaussian mixture model (GMM) [15]. As shown in Figure 1 MODNet provides a
novel way to implement TRIMmapless portrait matting [15] to model references and generate, mark
nodes, and cut if the background does not belong to the same terminal. To improve the performance
of our portrait matting system.

3.2.1. GrabCut

GrabCut [13] algorithm transforms the problem of image segmentation into the problem of
distinguishing gray levels between colors, and its core is to use graph cut to find the best
segmentation between foreground and background. GrabCut firstly divides the image into labels,
and then distinguishes the gray levels of these divided images. After distinguishing different gray
levels, it divides the foreground and background and cuts them as shown in Figure 1).

3.2.2. Architecture of MODNet

MODNet categorizes the trimap-free matting objective into three primary components: semantic
estimation, detail prediction, and semantic-detail fusion. The components are concurrently
optimized through three interrelated branches, as seen in Figure 2. The semantic estimation branch
in MODNet is responsible for locating the depiction in the provided image I(the output image
obtained by Plrenderer). It uses an encoder, especially the low-resolution branch S of MODNet, to
extract high-level semantics. In our implementation, we adopt a backbone similar to MobileNetV2
for its efficiency in real-time applications.
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Figure 2. The specific operation flowchart of ModNet [14]

Semantic Mask Prediction
In order to predict the coarse semantic mask s, , we input the output of encoder S(I) into the

convolution layer activated by the Sigmaid function, reducing the number of channels to 1. The
supervision of s, comes from the down sampling thumbnail of the ground truth matte o,. L2 loss

function is formulated as:

,?:—élsp—G(ag)b (1)
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where G represents a composite operation of downsampling followed by Gaussian blur. This
operation removes fine-grained structures irrelevant to portrait semantics, ensuring the semantic
mask focuses on the global portrait region.

Detail Prediction

The detail prediction branch D in MODNet focuses on processing the transition region around the
foreground portrait. It takes three inputs:

* The original input image I,

* The output of the semantic estimation branch S(I),

* Low-level features extracted from encoder S.

By reusing the low-level features from S, this branch minimizes computational overhead while
preserving spatial details.

The output of branch D is denoted as D(I,S(I)), explicitly indicating its dependency on high-level
semantics S(I).D(L,S(I)) exports boundary details matte d, and supervises through L1 loss function:

<z :md’dp_agh (2)

where m, is a binary mask generated by applying morphological dilation and erosion to a,. This
mask constrains the loss calculation to the transition region:

mq(x) =1 & n{if }  en{transition region}n

0 & 11{otherwise}!

The transition area is defined as the zone between the expanded and eroded real ground masks,
effectively concentrating learning on the portrait boundaries.

Semantic and Detail Fusion

MODNet combines semantic information S(I) and boundary details D(I,S(I)) by fusing branches
Fto predict the final alpha matte a,. The process involves:

» Upsampling S(I) to match the spatial resolution of D(I,S(I))

* Concatenating the aligned features along the channel dimension

* Processing the concatenated features through F to generate o,

The loss function for alpha matte prediction combines L1 error and compositional constraints:

Lo =lay — g, + £ 3)
where the compositional loss L_ is defined as:
& =|I (@ Fy+(1—0,)®B,), 4)

with Fy and B, denoting the ground truth foreground and background respectively, and ©

representing element-wise multiplication. MODNet [14] is optimized end-to-end through weighted
summation of branch-specific losses:

g = )\33 + )\dg + Aaga (5)
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Hyperparameters Ag, Ag, A, balance the contributions:

* A\; = A, =1 (semantic and fusion losses)

* A¢ = 10 (enhanced boundary detail supervision)

This configuration emphasizes boundary accuracy while maintaining global consistency.

We employed a fusion model based on image segmentation results, aiming to integrate the
advantages of reference images and generated images to obtain more desirable output results. The
fusion process is mainly based on the following steps and formulas [14].

To make the segmentation results more stable and accurate, we calculated the median of
consecutive frame segmentation results. Specifically, for each pixel point (x,y), the median
segmentation result thed (x,y) at time t is the median of the segmentation results of the

corresponding pixel points in the previous five frames (including the current frame). Its
mathematical expression is:

thed (m7 y) = median{Mt (.’ZZ, y)7 My 1 (.’L‘,y), T 7Mt—4 (.’L‘, y)} (6)

where M, (x,y) represents the pixel value at the position (x,y) in the segmentation result image at
time t. By this means, noise and fluctuations in the segmentation results can be effectively reduced.

We extract the common background region from the reference image I,.; that matches the
median segmentation result and fuse it with the generated image j;;. First, we obtain the
intersection of the median segmentation result M ;¢ and the background region mask M ref in the
reference image through the logical AND operation ( N ), and then smooth it using a Gaussian filter
to obtain the fusion region mask M/“**" _Its expression is as follows:

Mtf usion _ (3aussian (Mmed  MeT) (7)

The Gaussian filter (Gaussian) here uses a 7x7 kernel to smooth the boundaries of the fusion
region and reduce splicing traces.

Finally, we fuse the generated image f;;l and the reference image I,.; according to the fusion

r fusion
region mask M,"**"to obtain the final fused image *# . The fusion formula is:
fusion fusion T fusion {
It - 1_Mt ®Ig€’ﬂ+Mt @Ifref ( )

where © represents element-by-element multiplication operation. The meaning of this formula
is that for the part where the value of the fusion region mask is 0 (i.e., the region mainly belonging
to the generated image), the pixel values of the produced image are preserved; for the part where the
value of the fusion region mask is 1 (i.e., the region mainly belonging to the reference image), the
pixel values of the reference image are adopted; and for the intermediate transition region, linear
mixing is performed according to the value of the fusion region mask, thus achieving seamless
fusion.
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In this section, our model processes raw videos from Plrender [6] using pretrained ModNet [14] and
GrabCut [13] respectively, employing these two segmentation methods for foreground separation
and background composition to generate new videos. We denote the strategy of employing ModNet
for foreground background segmentation and fusion within PIRender as PIRender-ModNet, while
the approach utilizing GrabCut for equivalent segmentation and fusion is referred to as PIRender-
GrabCut. (results shown in Figures 3 and Figure 4) We adopted the Learned Perceptual Image Patch
Similarity (LPIPS) [16] metric, an image similarity evaluation metric based on deep neural network
feature space distance, used to quantify the perceptual differences between two images, to evaluate
the generated results (containing five different models/subjects). A lower LPIPS metric indicates
better generation results. The quantitative assessment demonstrates that GrabCut achieves
marginally superior LPIPS values compared to ModNet in the current test cases. However, beyond
the LPIPS metric, we also conducted qualitative evaluations through visual observation of video
outputs.And case analysis reveals three distinct scenarios:

PIRender-GrabCut superiority (e.g., Model 5 in Figure 3): The third image generated by
PIRender-ModNet exhibits abnormal dark artifacts along hair boundaries (indicated by red arrows in
the Figure 3), likely due to suboptimal segmentation and fusion in ModNet’s processing, whereas
PIRender-GrabCut produces artifact-free results. PIRender-ModNet superiority (e.g., Model 1 in
Figure 4): The fourth image from PIRender-GrabCut displays noticeable artifacts near the
microphone region (indicated by red arrows in the Figure 4), which are absent in PIRender-
ModNet’s output. Comparable performance (e.g., Model 3 and 4): No discernible differences were
observed between the outputs of both methods. However, while PIRender-ModNet demonstrated
superior performance in a small subset of specific test cases compared to PIRenderGrabCut, it is
worth noting that this advantage comes with prerequisite conditions. Unlike GrabCut, a traditional
graph-cut based segmentation algorithm that requires no training, ModNet necessitates substantial
computational resources and time investments for model training and parameter optimization prior
to implementation. Thus, our implementation utilizes a pre-trained ModNet deep learning model for
automated foreground-background segmentation and composition. This fundamental distinction in
operational requirements positions GrabCut as a more accessible solution for scenarios demanding
rapid deployment, particularly in resource-constrained environments.

Quantitative Analysis of LPIPS Metrics (results shown in Table 1): The experimental results
demonstrate significant improvements through post-processing strategies: PIRender-GrabCut
achieves an average LPIPS score of 0.0276 across five subjects, PIRender-ModNet is 0.0330. This
represents a 16.36% relative improvement for GrabCut over ModNet. Both post-processed methods
substantially outperform the baseline PIRender (baseline LPIPS = 0.0355): GrabCut shows 22.25%
improvement, ModNet achieves 7.04% improvement.

These quantitative findings confirm the effectiveness of our proposed postprocessing framework
in enhancing the original PIRender outputs.

Quantitative and qualitative evaluations demonstrate that PIRender-GrabCut generally achieves
superior performance in both LPIPS metrics and visual inspection for most test cases, with limited
exceptions showing comparable or slightly inferior results. Crucially, both post-processing strategies
(GrabCut and ModNet implementations) exhibit significant improvements over the baseline
PIRender output across all evaluation metrics.
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Figure 3. Selected comparative results where PIRender-GrabCut outperforms PIRender-ModNet
(The four columns represent: Reference image, PIRender output, PIRender-GrabCut result, and
PIRender-ModNet result respectively) slightly inferior results. Crucially, both post-processing
strategies (GrabCut and ModNet implementations) exhibit significant improvements over the
baseline PIRender output across all evaluation metrics

Figure 4. Selected comparative results where PIRender-ModNet outperforms PIRender-GrabCut
(The four columns represent: Reference image, PIRender output, PIRender-GrabCut result, and
PIRender-ModNet result respectively)
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Table 1. Quantitative analysis of LPIPS metrics (the best statistics of experimental results are bold in

the table)
Method Model 1 Model 2 Model 3 Model 4 Model 5 Models average
Pirender 0.0194 0.0371 0.0319 0.0147 0.0743 0.0355
Pirender-GrabCut 0.0165 0.0245 0.0252 0.0115 0.0604 0.0276
Pirender-ModNet 0.0190 0.0335 0.0301 0.0131 0.0693 0.0330

Our experimental results consistently demonstrate that the proposed post-processing pipeline,
leveraging either GrabCut or MODNet for segmentation followed by fusion, effectively mitigates
the key limitations—facial distortion, and background interference—inherent in videos generated by
Plrenderer. The significant quantitative improvements in LPIPS scores (averaging a 22.25%
improvement with GrabCut and 7.04% with MODNet over the baseline, Table 1) and qualitative
reduction in visual artifacts (Figures 3 & 4) confirm the efficacy of this approach. This success can
be primarily attributed to the core function of segmentation and fusion: by decoupling the
foreground (subject’s face) from the potentially noisy or inadequately rendered background in
Plrenderer’s output, and subsequently fusing it with a stable background reference, we directly
address the root causes of the observed distortions and blurring. This process alleviates the negative
influence of background artifacts on the foreground and potentially recovers finer facial details that
may be lost due to the limitations of the 3DMM-based parameter decoupling in Plrenderer [6].

This work presents a hybrid methodology that integrates the GrabCut and MODNet algorithms to
enhance background segmentation in portrait video creation. GrabCut offers high user controllability
and requires no pre-trained models, making it lightweight and flexible. On the other hand, MODNet
provides a high degree of automation and delivers superior segmentation accuracy through its end-
to-end trimap-free matting architecture. By integrating the strengths of both methods, our model
aims to mitigate the common issues found in existing models, such as facial distortion and
background interference. While this dual-method approach enhances segmentation performance, it
also introduces challenges, such as increased data processing requirements and dependency on the
initial input quality. Additionally, the computational demands for training and deployment are
relatively high. Overall, the proposed system demonstrates that a post-processing pipeline
combining traditional and deep learning-based segmentation techniques can significantly enhance
the visual realism and stability of face generation systems. And our work has surely brought
improvements to the original module. Future work will focus on optimizing model efficiency and
extending its adaptability to more diverse and dynamic real-world scenarios.
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