
Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

50

Algorithmic Bias and the Power of Code: Investigating the
Reproduction of Gender Structures in the Development of

Computer Technologies

Heying Bai

Sun Yat-sen University, Guangzhou, China
baiheying505@outlook.com

Abstract: This study explores how everyday programming practices reproduce and amplify
gender bias in software systems. By analyzing five widely used open-source repositories in
the fields of recruitment and financial analysis (totaling over 200,000 lines of code), and
conducting in-depth interviews with ten developers, we identified three common patterns of
bias: rigidly coded binary gender labels, stereotype-driven feature engineering (such as
“vacancy years”), and the negation of non-binary genders. Static code analysis marked these
trends, while dynamic testing on the gender-balanced dataset showed that the false negative
rate for female users could be up to 15 percentage points higher, and there was a 10%
inflation in the risk score. The interview revealed that organizational pressures (tight
deadlines, lack of built-in fairness tools, and lack of procedural guidelines) led designers to
be unable to mitigate bias. Based on the above findings, we propose a method for classifying
“bias-prone code features,” an integration strategy for automatically detecting bias in
continuous integration, and targeted code review guidelines. This achievement not only
provides empirical evidence of code-level unfairness but also presents practical suggestions
for integrating fairness into the software development lifecycle, thereby promoting a more
equitable social technology system.

Keywords: Algorithmic bias, gender structures, code review, socio‑technical systems,
equitable computing

1. Introduction

Machine learning-based automated decision-making systems and complex software architectures are
increasingly influencing highly sensitive domains such as applicant screening, loan approval, and
clinical risk assessment. While these systems promise to improve efficiency and consistency, their
potential stereotypes often reinforce or even exacerbate structural inequalities. Previous studies have
focused primarily on the representativeness of datasets and fair intervention at the model level, but
have relatively ignored the foundational layer where software code bias may initially take root.
When developers rigidly integrate binary categories, adopt alternative variables with gender
connotations, or completely ignore non-binary options, they may unwittingly introduce
discrimination into the basic logic that governs data flow and decision rules. This article traces the

Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

51

formation of code-level gender bias in real-world software systems. We selected five open source
repositories spanning Python, Java, and JavaScript and analyzed over 200,000 lines of code
compatible with the user profiling and risk assessment module [1]. To complement the static
analysis, we constructed a gender-balanced test dataset containing synthetic non-binary inputs to
dynamically assess the false positive and false negative rates for different gender groups. To
understand the reasons for these findings, we conducted in-depth interviews with ten active
contributors to examine their awareness of gender-balanced tools, the pressure of rapid release
cycles, and current code review mechanisms. This investigation addresses three fundamental
questions: (1) How can everyday programming practices reproduce gender-inflected social norms?
(2) What specific code patterns are most closely linked to gender-balanced outcomes? (3) What
processes and technical means can help developers identify and correct these patterns? We propose a
method for classifying “bias-prone code features,” empirical evidence of related performance gaps,
and a set of practical guidelines, aiming to integrate bias detection into the continuous integration
process and the code review phase. By revealing the socio-technical factors that cause code-level
unfairness, this research lays the foundation for overall optimization and building a more inclusive
software development process.

2. Literature review

2.1. Foundations of algorithmic bias

Algorithmic bias occurs when an automated system systematically harms a specific group. Bias can
creep in at multiple stages: for example, when selecting training data, it may not adequately
represent women or nonbinary populations; or the model may lean toward common patterns of a
certain gender; or it may use post-processing rules that solidify differences. In addition to data and
model design, organizational pressures—such as tight deadlines or cost constraints—can also
exacerbate bias by reducing opportunities for adequate verification and peer review [2]. When a
team lacks a clear framework for equitable governance, unexamined gender norms will be
embedded in the production process and continue to be repeated. Therefore, combating algorithmic
bias requires not only technical safeguards but also institutional policies to mandate periodic bias
assessment and transparent reporting.

2.2. Gender and technology

Design choices in software engineering often reflect the social perspective of developers. Male-
dominated teams may inadvertently embed masculine-conforming default settings in interfaces and
data architectures, resulting in features that are more user-friendly for male users. For example, if a
user profile form only offers the options “Mr.” and “Ms.”, it not only excludes non-binary gender
identities but also sends a signal to end users that deviating from binary norms is unpopular.
Research on human-computer interaction shows that even subtle elements—such as color schemes,
icon designs, or option sequences—can have gender implications [3]. Mitigating these effects
requires explicitly incorporating multiple viewpoints into the requirements gathering stage and
conducting iterative usability testing for users of different genders. The introduction of participatory
design or value-aware design frameworks can help identify hidden biases at all stages of production
[4].

Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

52

2.3. Code‑level analyses

Recent efforts to uncover code-level bias have focused on identifying "code smells" related to
fairness violations. As Figure 1 shows, common problem patterns such as hard-coded gender
classification can be categorized as "unnecessary code," while oversimplified feature engineering
and the complete exclusion of non-binary options, if they lead to bloat or distortion of data
representation, can be considered manifestations of "bloat code" and "object-oriented abuse."
Emerging bias detection tools scan the codebase to flag such patterns—including explicit gender
labels, features reflecting stereotypes (such as indicators of career gaps), and architectural gaps
corresponding to nonbinary identities—but they often burden developers due to excessive false
positives and are outside the standard build process [5]. To integrate these tools into everyday
practice, contextual suggestions (such as precisely locating specific line numbers where binary
hardcoding occurs) must be provided, seamlessly integrated into the continuous integration pipeline
and development environment, and the flagged “flavors” must be directly mapped to usable
remediation steps in the code review process.

Figure 1. A taxonomy for ‘bad code smells' (source:
https://codesai.com/assets/code_smells_taxonomy_mantyla_2003.png)

3. Methodology

3.1. Data collection

To gain a better understanding of current development practices, we comprehensively analyzed
candidate repositories based on quantitative and qualitative criteria: the number of GitHub
repositories (at least 2,000), recent submissions, geographical diversity of contributors, and the
presence of user profiles or decision-making modules [6]. The final five selected projects—two in
the field of recruitment automation and three in the field of financial risk scoring—cover the
technology stacks of Python, Java, and JavaScript. We wrote scripts to clone the default branches of

Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

53

each repository, located the relevant modules by traversing the directory structure, and finally
summarized them to form an analysis sample of over 200,000 lines of code.

Simultaneously, we recruited ten active developers by posting personalized invitations to the
project mailing list and by nominating them directly in the discussion area of the issue. Participants
include various roles such as core maintainers, frequent submitters, and non-core contributors, with
experience ranging from 2 to 10 years. The semi-structured interview plan contains the following
open-ended questions: (a) awareness of the Equity Toolkit; (b) typical pull request review process;
(c) organizational policies focused on mitigating bias; (d) greatest technical or time limitations
encountered. During the follow-up session, respondents are asked to provide examples of biases
they have encountered [7]. Each interview (45–60 minutes) was conducted via videoconference.
With informed consent, it was recorded and transcribed into anonymous text by a professional
institution. All data processing was carried out in accordance with approved research standards for
human subjects.

3.2. Bias pattern identification

Our analysis process begins with static code analysis: using syntax tree tools (Python's ast library,
JavaParser, and JavaScript's Esprima), the system marks gender-related character literals,
enumeration definitions, and database structure fragments. The marked elements are then introduced
into the annotation interface, allowing researchers to manually review the context (such as "check
function," "database migration script"), record variable and function names, and extract inline
comments.

During the dynamic testing phase, we integrated the public CV dataset (derived from Kaggle)
with 1,000 artificially synthesized non-binary user profiles to create a balanced evaluation set—each
profile varies in age, education, and professional experience [8]. The basic screening and scoring
module was run on this dataset to record the classification results for each gender group. False
positive and false negative rates are calculated by module and system as a whole, respectively. To
verify the reliability of performance differences, we used 1000 repeated sampling methods to
calculate the 95% confidence interval of each index to confirm the stability of the results [9].

3.3. Validation and reliability

To assess inter‑rater agreement on static labels, two researchers independently reviewed a random
20% sample of flagged code snippets; the resulting Cohen’s κ of 0.82 indicates strong alignment.
Discrepancies were adjudicated in a consensus meeting, leading to refinement of our coding manual
— which now includes detailed examples of borderline cases (e.g., contextual use of “M” vs.
“Male”).

Interview data underwent thematic analysis: a separate two‑person team coded transcripts in
NVivo, inductively deriving themes related to tool awareness, process maturity, and constraint
management [10]. Coding proceeded iteratively until no new themes emerged (saturation). All
coding artifacts—manuals, codebooks, meeting notes, and version histories—are maintained in a
secure audit‑trail repository, ensuring full transparency and enabling future replication.

Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

54

4. Results

4.1. Common bias‑prone patterns

The static analysis reveals that three deviation patterns coexist across the five code bases. First,
developers often directly write the binary gender tag "male/female" without reserving other identity
options. These hard-coded elements are typically used in conditional branches, validation programs,
and database structures, leading to logical failures when new gender categories emerge. Second,
features such as "number of years of career gap" are designed based on the stereotype of caregiving
responsibilities, resulting in a systematically elevated risk score for women. While these alternative
variables are ostensibly associated with professional experience, they will reinforce the bias when
used uncorrected [11]. Third, the code and data model completely ignore non-binary gender
categories, preventing users from being processed by the system. In most cases, submitting non-
binary gender values will trigger unhandled exceptions. These deviation patterns all correspond to
quantifiable performance gaps in our dynamic tests (for details, see Tables 1 and 2).

Table 1. FalseNegative Rates by gender

Gender FalseNegative Rate (%) Deviation from Benchmark (%)

Male 8.2 –1.8
Female 23.1 +13.1

Nonbinary 18.7 +8.7

4.2. Developer perspectives

Interviews show that most developers recognize the risk of bias but lack the capacity to manage it in
practice. The time pressure of biweekly iterations and the lack of built-in fairness tools forced the
team to prioritize functional development over data processing. One developer admitted, “We know
hard-coded labels aren’t flexible, but this iteration didn’t have time to integrate a fairness library or
review process, and the risk of changes is too high.” Several participants relied on informal peer
code reviews rather than specialized bias detection frameworks, and no one had guidelines or
checklists for handling ambiguous situations. The lack of such process support often leads to non-
binary options being directly ignored rather than carefully integrated.

4.3. Impact assessment

Dynamic testing shows that the false negative rate of modules using rigid binary labels for female
users is up to 15 percentage points higher than that for male users. In financial risk assessments,
reliance on stereotype engineering results in an average risk score that is inflated by 10% for
women, and more qualified candidates are misclassified as high risk. The average risk for non-
binary users is inflated by 8%, reflecting temporary manipulation rather than full support.

Not only do these differences harm individuals—with qualified women and non-binary
candidates being overlooked—but they also distort downstream analyses and strategic decisions that
rely on these modules. For example, an overstated risk profile can lead to unfair rejection of
opportunities and distorted demographic reports, ultimately undermining the organization’s diversity
and inclusion goals [12].

Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

55

Table 2. Average risk score inflation by gender

Gender Average Score Inflation (%)

Male 0.0
Female 10.2

Nonbinary 8.1

5. Conclusion

This study confirms that gender bias is not just a training data issue, but more often stems from
seemingly ordinary programming choices at the source code level. Hard-coded dichotomy,
characteristic indicators based on caregiving responsibilities, and the absence of non-binary
architecture were present in every repository inspected and resulted in significant differences—the
false negative rate for female users increased by 15 percentage points and the risk score was inflated
by 10%. Interviews with developers reveal that time pressure, the lack of built-in fairness tools, and
the absence of official guidelines prevented the team from addressing these issues early.

To address this gap, we propose three collaborative measures: Second, integrate the automated
bias detector into the continuous integration pipeline and development environment to provide line-
level feedback with contextual positioning. Third, develop a targeted code review checklist that
requires consideration of non-binary categories and challenges the selection of stereotypical
characteristics. Future research should extend this framework to other identity dimensions such as
race and disability, and develop automated repair tools that can provide neutral alternatives in real
time. By integrating equity into the core development process, software teams can build more equal
social technology systems that serve all users.

References

[1] López, P. (2021). Bias does not equal bias: A sociotechnical typology of bias in databased algorithmic systems.
Internet Policy Review, 10(4). Retrieved from https: //policyreview.info/articles/analysis/bias-does-not-equal-bias-
socio-technical-typology-bias-data-based-algorithmic

[2] Shrestha, S., & Das, S. (2022). Exploring gender biases in ML and AI academic research through systematic
literature review. Frontiers in Artificial Intelligence, 5, Article 976838. https: //doi.org/10.3389/frai.2022.976838

[3] Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M. E., Ruggieri, S., Turini, F., & Papadopoulos,
S. (2020). Bias in datadriven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 10(3), e1356. https: //doi.org/10.1002/widm.1356

[4] Prates, M. O., Avelar, P. H., & Lamb, L. C. (2020). Assessing gender bias in machine translation: A case study with
Google Translate. Neural Computing and Applications, 32(9), 6363–6381. https: //doi.org/10.1007/s00521-020-
04974-5

[5] Tang, R., Du, M., Li, Y., Liu, Z., Zou, N., & Hu, X. (2021). Mitigating gender bias in captioning systems. In
Proceedings of The Web Conference 2021 (pp. 633–645). https: //doi.org/10.1145/3442381.3449840

[6] D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., & Halpern, Y. (2020). Fairness is not static:
Deeper understanding of longterm fairness via simulation studies. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency (pp. 525–534). https: //doi.org/10.1145/3351095.3372857

[7] González, J. A., & Smith, K. (2023). Dealing with gender bias issues in dataalgorithmic processes: A
socialstatistical perspective. Algorithms, 15(9), 303. https: //doi.org/10.3390/a15090303

[8] Sultana, S., Turzo, A. K., & Bosu, A. (2022). Code reviews in open source projects: How do gender biases affect
participation and outcomes? arXiv Preprint arXiv: 2210.00139.

[9] Sultana, S., & Bosu, A. (2021). Are code review processes influenced by the genders of the participants? arXiv
Preprint arXiv: 2108.07774.

Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.25254

56

[10] Chun, J. S., De Cremer, D., Oh, E.J., & Kim, Y. (2024). What algorithmic evaluation fails to deliver: Respectful
treatment and individualized consideration. Scientific Reports, 14, Article 25996. https: //doi.org/10.1038/s41598-
024-76320-1

[11] Park, J., & Lee, H. (2025). FairCode: Evaluating social bias of large language models in code generation. arXiv
Preprint arXiv: 2501.05396.

[12] Alvarez Ruiz, L. (2023, August 25). Gender bias in AI: An experiment with ChatGPT in financial inclusion. Center
for Financial Inclusion. Retrieved from https: //www.centerforfinancialinclusion.org/gender-bias-in-ai-an-
experiment-with-chatgpt-in-financial-inclusion

