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Abstract. As the application demand for humanoid robots in complex and unstructured
environments increases, how to balance adaptability and stability in control strategies has
become increasingly critical. This paper compares and analyzes two typical humanoid robot
control methods: a reinforcement learning-based controller on the Digit V3 platform and a
multi-contact planning and control (MCPC) framework on the COMAN+ platform. This
work addresses a gap in the literature that lacks a comparative perspective on cross-method
and cross-platform practical verification. It first introduces the design concept and training
mechanism of the reinforcement learning controller, which removes reliance on gait clocks
and achieves the natural switching between standing and walking under external
disturbances. Then it analyzes the MCPC framework, which combines posture sampling,
nonlinear programming (NLP) trajectory optimization, and torque-level balance control to
support the robot to stably perform complex multi-contact tasks. Experimental results show
that the reinforcement learning controller exhibits excellent robustness in disturbance
response and command switching, while the MCPC method shows higher accuracy and
repeatability in structured tasks. The results of this study show that reinforcement learning is
suitable for dealing with scenarios with strong dynamic adaptability, while planning control
emphasizes interpretability and physical feasibility. The comparative analysis presented in
this article provides a reference for understanding the trade-offs in humanoid robot control
strategies and also offers guidance for truly realizing embodied intelligence in humanoid
robots in the future.
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1. Introduction

Compared to wheeled or crawling robots, humanoid robots are more suitable for working in human
living environments due to their anthropomorphic design [1]. However, in daily life, tasks such as
walking, maintaining balance, and avoiding obstacles place extremely high demands on humanoid
robots' precise motion control, real-time environmental adaptation, and balance stability [1].
Therefore, in recent years, the concept of embodied intelligence has received increasing attention.
This concept emphasizes that the realization of intelligence depends not only on algorithms, but also
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on the interaction between the robot's physical structure and the environment in which it is located
[2].

Many studies have been devoted to improving the control capabilities of humanoid robots. For
example, the zero-moment point (ZMP) control method proposed by Kajita et al. can generate
smooth center-of-mass trajectories, support arbitrary foot placement, and effectively compensate for
the ZMP error of the multi-body model through preview control. It was successfully applied to
achieve the dynamic walking of the HRP-2P bipedal robot on a spiral staircase in a simulated
environment, providing a theoretical basis for stable bipedal gait, and is still widely used today [3].
Later, some scholars introduced reinforcement learning to enable robots to automatically learn
actions in changing environments. For example, Xie et al. demonstrated the great potential of
reinforcement learning in controlling the Cassie bipedal robot in a simulated environment. The
learning controller was able to learn a robust policy in 2.5 hours, which enabled it to handle tasks
such as 0.22-meter sinusoidal terrain and 140-N disturbances, while supporting dynamic speed
adjustment, demonstrating significant superiority over a manually tuned reference controller in 3D
walking, terrain adaptation, disturbance recovery, and speed regulation. However, there is still a gap
in transferring these skills to real robots [4]. In addition, Sentis and Park proposed a multi-contact
flexible control strategy that demonstrated high-precision center of mass tracking, compliant contact
behavior, and internal force control, as well as robustness to unmodeled disturbances and model
uncertainties [5]. However, there is still a lack of research that integrates these methods into a
complete system and systematically verifies them on a real platform. This shows that the
understanding of how the various modules in the embodied intelligence system work together is not
deep enough.

This paper examines two representative humanoid robot studies: a reinforcement learning-based
control method on the Digit platform and a multi-contact control framework verified on the
COMAN+ platform. By comparing their different designs and experimental performances in task
switching, body support control, and environmental adaptation, this paper aims to analyze the key
issues and technical challenges currently faced in realizing embodied intelligence in real humanoid
robots.

2. Theoretical basis and principles

Humanoid robots are essentially dynamically unstable systems. Robots often rely on rapid
adjustment of body posture during short, intermittent contact with the ground to maintain balance,
so they face great challenges in control. In addition, robots face multiple challenges in real
environments from terrain, load changes, external interference, and human-machine interaction [6].
Therefore, developing a strategy that can achieve whole-body coordinated control in a changing
environment is the key to achieving stable operation of humanoid robots.

2.1. Reinforcement learning control method

Reinforcement learning is a self-learning method based on trial and error. The robot gradually
explores which actions can obtain higher rewards through interaction with the environment, thereby
forming a stable and effective strategy. Unlike traditional control methods that rely on detailed
modeling and clear rules, reinforcement learning guides the robot to autonomously learn to complete
tasks such as maintaining balance, walking forward, or avoiding obstacles by setting a reward
function [7].



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL25269

27

In humanoid robot control, commonly used reinforcement learning algorithms include Proximal
Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), and Soft Actor-Critic
(SAC). Among them, PPO is more stable and has high sample efficiency, which is suitable for use
on real robot platforms, while DDPG and SAC are more suitable for controlling robots with many
joints and continuous actions. They are more reliable in complex environments and in the presence
of noisy or uncertain data.

2.2. Planning-based multi-contact control method

Different from the strategy generation method of reinforcement learning, the planning-based control
method emphasizes the interpretability of the control process and the determinism of task execution.
In typical multi-contact control tasks, this method generally consists of three main modules: (1) a
posture sampling planner is used to generate multi-contact sequences; (2) a trajectory optimizer
ensures the dynamic feasibility and smoothness of the path; (3) a controller uses a torque feedback
strategy to achieve balance control and execution accuracy [5]. Due to its strong predictability and
clear action structure, this method shows strong stability and execution efficiency in tasks that
require the robot to adjust the contact force and support surface by coordinating body movements. It
is particularly suitable for actions such as climbing, wall support, or four-point support.

3. Case analysis

3.1. Learning and evaluation of Standing and Walking (SaW) control strategy on digit V3
platform

Digit V3 is a humanoid robot with high dynamic motion capability launched by Agility Robotics.
Researchers developed a new controller structure on this platform to further improve the response
flexibility of the reinforcement learning control strategy. Although reinforcement learning has freed
robots from the dependence on traditional rules or trajectories and achieved "state-driven" strategy
generation, many existing methods still rely on gait clocks or phase-based state representations,
which limit the controller's ability to adapt to disturbances and instructions in real time. In contrast,
the single-contact reinforcement learning controller (based on a single foot contact assumption)
proposed in this study makes autonomous decisions based entirely on the current state of the robot.
It can achieve natural switching between standing and walking without relying on external clock
signals or behavioral cycles, and can still maintain stable operation when subjected to external
interference, showing stronger versatility and robustness [8].

To this end, the researchers have done three main tasks: (1) Designed a low-cost and reusable
SaW performance evaluation system to compare the performance of controllers in three aspects:
disturbance rejection ability (fall rate), command tracking accuracy (rotation accuracy in place,
speed accuracy) and energy efficiency; (2) Proposed a reward function based on the single contact
assumption to avoid dependence on reference trajectory or clock signal. By adjusting the disturbance
distribution in training (force: 20-200 N, duration: 200-500 ms) and increasing the command
duration (increased from the original 40-100 timesteps to 100-300 timesteps), an improved version
(Single Contact++) was designed. (3) The PPO reinforcement learning algorithm combined with the
LSTM network structure was used to train the policy model [8].

As shown in Table 1, the researchers compared the standing and walking (SaW) performance of
four controllers on the Digit platform, including the original controller (Agility controller), the
reinforcement learning controller based on the gait clock, the single-contact RL controller, and its
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improved version (Single-Contact++). The evaluation dimensions include: fall rate in different
directions, rotation accuracy in place (displacement and angle drift), target speed tracking accuracy,
and energy consumption per unit distance.

Table 1. Standing and Walking (SaW) performance evaluation table of four controllers [8]

Controller
Metric

Manufacturer Controller
(Agility controller) Clock-Based RL Single-Contact RL Single-Contact++ RL

Fall rate in x-direction [%] 22 60 6 0
Fall rate in y-direction [%] 56 56 47 0

XY drift at 1s [m] 0.0 0.1 0.0 0.0
XY drift at 5s [m] 0.8 0.3 0.2 0.0
XY drift at 30s [m] 1.7 0.7 0.5 0.2

Angular deviation at 1s [°] -11 0 0 0
Angular deviation at 5s [°] -9 0 0 0
Angular deviation at 30s [°] -17 0 0 0

Velocity tracking accuracy [m/s]
(Target Command of 1.00 m/s) 0.74 1.04 1.13 Not recorded

Energy efficiency [J/m] 147 182 180 Not recorded

Judging from the results, the single-contact controller and its improved version outperform
Digit's original default controller and gait clock reinforcement learning controller in core indicators
such as disturbance rejection ability and rotation command tracking accuracy, reflecting that the
controller designed by the researchers is more robust under complex disturbances than the previous
controllers.

Although this method has obvious advantages in anti-interference and command response, it still
has certain limitations. For example, the energy consumption of the single-contact reinforcement
learning control strategy is significantly higher than that of the manufacturer's controller; the speed
control that performs well in simulation still has Sim-to-Real deviation in reality. The researchers
propose that these problems can be solved by introducing energy penalty terms and more realistic
physical modeling, providing direction for the design of controllers that are more energy-efficient
and more adaptable to changing environments in the future.

3.2. Design and verification of a Multi-Contact Planning and Control (MCPC) framework on
the COMAN+ platform

COMAN+ is a humanoid robot platform with torque control capabilities that can perform complex
whole-body movements. To meet the requirements of tasks such as ladder climbing, wall support,
and narrow space movement, researchers designed a multi-contact control framework that integrates
posture planning, trajectory optimization, and execution control [9].

The researchers adopted a two-stage strategy: at the planning level, a posture sampling method
based on RRT-like (RRT: Rapidly-exploring Random Tree) was used to generate a preliminary
action sequence, and trajectories were optimized with the help of a nonlinear programming (NLP)
algorithm to ensure that the path is feasible and the action is coherent; at the control level, a posture
switching manager and a reactive balance controller were used to generate torque commands in real
time, so that the robot can maintain closed-loop balance during actual execution [9].
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As shown in Table 2, COMAN+ successfully completed the complete action sequence planning
and control execution in four types of multi-contact tasks: ladder climbing, parallel walls climbing,
quadrupedal walking, and standing up. The performance evaluation covers five key indicators: total
path planning time, posture segment trajectory generation time, number of trajectory optimization
iterations, number of search graph nodes, and number of support transition steps.

Table 2. Average performance data of posture planner [9]

Task
Plannin

g
time (s)

Transitio
n

Generatio
n

time (s)

Number of
iterations

Number of search graph
nodes

number of support transition
steps

Ladder climbing 43.60 37.64 1926.14 205.34 39.04
Parallel walls

climbing 175.35 171.01 1557.37 151.28 44.12

Quadrupedal
walking 62.69 55.99 2540.10 228.32 53.19

Standing up 7.56 6.02 459.24 62.19 17.00

From the data, the higher the complexity of the task, the greater the planning time and
computational cost. For example, the total planning time for the "parallel walls climbing" task is
175.35 seconds, which is much higher than the 7.56 seconds of the "standing recovery" task, and
corresponds to more optimization iterations (1557.37 times) and search nodes (151.28). In the
"ladder climbing" and "quadrupedal walking" tasks, the number of supporting switching steps
reached 39 and 53, respectively, indicating that the system has a strong continuous support
transformation planning capability. Overall, the system has demonstrated strong multi-contact action
organization capabilities in different task scenarios, providing a verification basis for complex body
coordination and action generation in the embodied intelligence system.

A major advantage of the MCPC framework is that it does not rely on predefined contact points
or manually configured motion templates and is applicable to a variety of task environments.
However, there are still certain limitations. The system only supports static balance and does not
have the ability to quickly adjust dynamically, and when trajectory optimization fails, there is a lack
of an effective fallback mechanism or route reconstruction function. Future improvements can
introduce dynamic balance control, strengthen trajectory quality assessment mechanisms, and
expand robustness verification under a wider range of task types, providing ideas for realizing
"multimodal body coordination" in embodied intelligence.

4. General discussion

From the above two cases, it can see that these two studies represent two typical paths of current
embodied intelligence humanoid robot control methods: data-driven reinforcement learning control
and structured planning-based control. Both reflect the key elements of embodied intelligence
control systems from different perspectives: the former emphasizes adaptability and learning ability,
while the latter emphasizes coordination and stability under structural constraints. See Table 3 for
details:
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Table 3. Comparative analysis of reinforcement learning and planning-based control strategies

Comparison
Dimensions Reinforcement Learning Control Planning-Based Control

Control Core Reinforcement learning strategy, autonomously
learn actions from experience.

Planner + Optimizer, design the
trajectory, and then execute it.

Data Source Interact with the environment and train through trial
and error

Has clear models, mission objectives, and
contact sequences

flexibility High, can adapt to unknown disturbances Low, need to re-plan or fail when
encountering changes

interpretability Poor, unclear about the principles of RL strategy Strong, visible path, clear control
objectives

Simulation and reality
consistency Poor, serious Sim-to-Real problem Good, depends on model accuracy, but

low transfer cost
Learning and
generalization

Generalizable, one set of controls can handle
multiple action requirements

Limited by task settings, lack of
versatility

Applicable scenarios A dynamically changing and constantly disruptive
environment

Complex structure, static multi-contact
tasks

5. Conclusion

This paper discusses two specific implementation paths of embodied intelligence in humanoid
robots through the analysis and comparison of the reinforcement learning control method on the
Digit platform and the multi-contact planning control framework on the COMAN+ platform. The
two cases represent the two ideas of "learning" and "planning" in the current embodied control
strategy, each of which is suitable for different task requirements, which also reflects the trade-off
relationship between adaptability, versatility, and interpretability of the control system.

Through comparison, it can be seen that if it wants to realize a humanoid robot with real
embodied intelligence, it needs to bridge the gap between perception, learning, and control and
achieve overall optimization driven by tasks. Future research can consider combining the flexibility
of reinforcement learning with the stability of planning methods to build a hybrid control
architecture that is both adaptive and predictable, providing new solutions for autonomous robots in
complex environments.
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