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Abstract. With the development of information technology and mobile communication, people's 

usage of emoji is increasing. However, designing emojis by artists can be time-consuming and 

costly. Therefore, this study attempts to use the Deep Convolution Generative Adversarial 

Network (DCGAN) method in deep learning to automatically generate emojis. DCGAN is a 

combination of Convolutional Neural Network (CNN) and Generative Adversarial Network 

(GAN). It introduces convolutional networks into the generative model for unsupervised 

training, which can improve the learning effect of the generator network. DCGAN consists of 

two different models: a generator model and a discriminator model. The generator's role is to 

produce fake images that are similar to the training images, and the discriminator's role is to 

judge whether the fake image is the same as a real image. During training, the generator 

continuously tries to defeat the discriminator by producing better and better fake images, while 

the discriminator tries its best to distinguish between real and fake images. Through continuous 

optimization of the generator and discriminator, this study can finally obtain clear new emojis. 

Overall, the images generated by DCGAN can largely fulfill our purpose. Many novel emojis 

could be obtained to replace the work of human artists. However, the quality of the generated 

emojis has some defects, and it is still necessary to screen out images with strange shapes that 

are not suitable for daily life. 
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1.  Introduction  

Emojis are commonly used in social media and may be considered a language for graphic illustration of 

emotions. Shigetaka Kurita invented emojis for Japanese operators of mobile phones in the late 1990s 

[1]. Emojis enhance the efficacy of computer-mediated communication by allowing users to convey 

more subtle emotions, such as cartoon face, food beyond text-based information. With the continuous 

development of mobile platforms, people's demand for emoji has increased significantly. However, the 

creation of emoticons is a sophisticated procedure that takes a long time for the artist. Because of a lack 

of imagination, the artist is only able to generate one emoji for each work. To solve this limitation, this 

study is attempting to employ artificial intelligence to aid in the development of emoticons in order to 

increase the diversity of emojis. This is a really significant and intriguing study area. This paper attempts 

to use the Deep Convolution Generative Adversarial Network (DCGAN) method to produce innovative 
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emojis that humans cannot imagine. Emoji pictures already in use serve as training data for the DCGAN, 

which subsequently generates new characters at random. 

The application of deep learning in daily life becomes increasingly extensive. Especially in the field 

of generation, Generative Adversarial Network (GAN) has attracted the attention of many researchers. 

Goodfellow et al. introduced Generator adversarial networks for the first time in 2014 [2]. With the 

ongoing research of specialists in deep learning, GAN has improved continually and produced many 

popular architectures. Compared with GAN, DCGAN has made some adjustments and used transposed 

convolution operation [3]. The images generated by DCGAN are clearer and more colorful than GAN. 

In contrast to traditional GAN, conditional GAN's input consists of two components: random noise 

distribution on one side and conditional label input on the other. The new model can produce 

handwritten digit images on the MNIST dataset in response to digit class labels. Jung et al. used 

Conditional GAN with a 3D discriminator to generate MRIs showing Alzheimer's disease development 

[4]. 

CycleGAN can be used to convert photos across styles. However, matched training data won't be 

accessible for many jobs. Without paired examples, cycleGAN translates pictures from the original 

dataset to the goals. Zhu et al. have used this technique in a variety of industries [5]. For instance, after 

learning the database containing horses and zebras, the horses and zebras on fresh images are 

transformed to each other. Coupled Generative Adversarial Network might learn to produce comparable 

smiley and frowny faces, as well as blond-haired and non-blond-haired ones, and so on. Zhang et a;. 

suggested using StackGAN to investigate text-to-image synthesis and obtained excellent results in their 

paper on StackGAN [6]. StackGAN consists of a pair of networks that, when provided with a textual 

description, can generate lifelike visuals. Text-to-image synthesis offers a wide range of practical 

applications, including synthesizing pictures from textual descriptions, translating textual narrative into 

comics, and building internal representations of textual descriptions. 

In this regard, given the benefits of Deep Convolutional GAN emoji generation, it theoretically 

becomes a feasible option to build an emoji producing machine. This research describes a Deep 

Convolutional GAN application for generating emojis using datasets from Facebook, Google, and 

Apple, etc. Deep Convolutional DCGAN are ideal for image processing and generation tasks since they 

considerably increase the stability of GAN training and the quality of generated outcomes. As a result, 

this study employ DCGAN to create new emojis. In this paper, the emojis from different platforms was 

collected as comprehensively as possible, and then this study processed these emo. A better generator 

and discriminator structure than the basic GAN model was developed, and the generator and 

discriminator were continuously trained. 

2.  Method 

2.1.  Dataset description and pre-processing 

The emoji image data used in this study is downloaded from the Kaggle website [7]. The emoji collection 

is obtained from online sources including Apple, Facebook and Google etc. The emojis are all 72 by 72 

pixels in size, and they are based on the RGB colour model. The dataset is first constructed as an image 

folder that contains every emoji. Before training, every image is converted into 64 × 64 pixels for 

speeding up the training process and reducing the computational resource, which is suitable for the 

generator and discriminator structures. Figure 1 provides the sample data of the collected dataset. In 

addition, the developed data loader separates the dataset into 128 batch sizes. To fulfil a requirement, 

i.e. a normal distribution with mean=0, standard deviation=0.02, all convolutional, convolutional-

transpose, and batch normalization layers are re-initialized. 
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Figure 1. The sample data of the collected dataset. 

2.2.  DCGAN 

GAN is a data generation model that is widely used in recent years. GAN is composed of  two 

networks, namely the generation network G (i.e. Generator) and the discriminative network D (i.e. 

Discriminator). G is responsible for generating a picture, it receives a random noise z, generates a picture 

through the noise, and records the generated picture as G(z). The discriminator (D) serves the purpose 

of evaluating the authenticity of an image denoted by x. Specifically, D(x) represents the probability 

that x corresponds to a genuine image. An output value of 1 indicates a certainty of 100% that x is a 

genuine image, whereas an output of 0 suggests that x is not an authentic image. During the training 

phase, the generator network (G) endeavors to create genuine images with maximal accuracy in order 

to outsmart the discriminative network (D). Conversely, D is aimed at distinguishing the artificially 

generated images from the genuine ones with utmost precision. This dynamic interplay between G and 

D constitutes a game-like framework. DCGAN is a deep convolutional network structure added on the 

basis of GAN, which specifically generates image samples. D and G in DCGAN adopt a relatively 

special structure in order to effectively model the image.  

In the present investigation, the generator (G) receives a 100-dimensional vector, referred to as the 

noise vector (z). The initial layer of G constitutes a fully connected layer, whereby the 100-dimensional 

vector is transformed into a 4x4x1024-dimensional vector. Subsequently, transposed convolution is 

employed from the second layer onwards to sample and progressively diminish the number of channels. 

Ultimately, the output of G comprises a three-channel image measuring 64 units in width and height. 

Please refer to Figure 2 for an illustration of the exemplar generator architecture. 

 

Figure 2. The sample architecture of the generator [8]. 
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Regarding the discriminator (D) depicted in Figure 3, its input corresponds to an image, while its 

output represents the probability that the input image is a genuine one. Within the framework of Deep 

Convolutional Generative Adversarial Networks (DCGAN), the structure of D comprises a 

convolutional neural network, which has been proven to be effective in various computer vision tasks 

[9-11]. The input image undergoes convolution through multiple layers to obtain a convolutional feature, 

which is subsequently processed by the logistic function, yielding an output that can be interpreted as a 

probability estimate. 

 

Figure 3. The sample architecture of the discriminator [8]. 

2.3.  Implementation details 

DCGAN employed the Adam optimization algorithm during training and this study set parameters (i.e. 

learning rate = 0.0005). Python was used to carried out the experiments for data preparation and DCGAN 

modelling. The testing was carried out on a PC with 8GB of RAM running the Windows 10 operating 

system [12]. The binary cross-entropy loss function was the one employed in our experiment. The 

calculation of the loss function is done in the discriminator. Since the discriminator's output is a binary 

classification of TRUE/Fake, the binary cross-entropy function is used overall. If the discriminator is 

required to accurately distinguish the generated images, 1-D(G(z)) needs to be as close to 1 as possible. 

For training the generator, the discriminator part should be kept fixed so that the generated data can be 

classified by the discriminator, i.e., D(G(z)) approaches 1, which validates the generated data through 

the discriminator [13]. 

 

𝑙(𝑥, 𝑢) = 𝐿 = {𝑙1, … , 𝑙𝑁}
𝑇, 𝑙𝑛 = −[𝑦𝑛 × 𝑙𝑜𝑔𝑥𝑛 + (1 − 𝑦𝑛) × 𝑙𝑜𝑔(1 − 𝑥𝑛)]  (1) 

3.  Result and discussion 

The generated images (100 epochs) obtained by the proposed DCGAN model can be found in Figure 4. 

In addition, the corresponding loss curve is presented in Figure 5. 

Figure 4. Real emojis collected on the platform VS Emoji obtained after 100 iterations. 
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Figure 5. The losses of generator and discriminator during 100 epochs. 

 

The generated images (500 epochs) obtained by the proposed DCGAN model can be found in Figure 

6. In addition, the corresponding loss curve is presented in Figure 7. 

 

Figure 6. Real emojis collected on the platform VS Emoji obtained after 500 iterations. 

 

Figure 7. The losses of generator and discriminator during 500 epochs. 

The generated images (1000 epochs) obtained by the proposed DCGAN model can be found in 

Figure 8. In addition, the corresponding loss curve is presented in Figure 9. 
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Figure 8. Real emojis collected on the platform VS Emoji obtained after 1000 iterations. 

 

 

Figure 9. The losses of generator and discriminator during 1000 epochs. 

The figures presented above reveals that the generated emojis remain notably unclear even after 200 

iterations. Upon reaching 500 iterations, the generated images demonstrate a rudimentary emoji shape, 

yet continue to possess a significant degree of blurriness. However, the quality of the generated emojis 

drastically improves after the model reaches 1000 iterations. It is observed that the authenticity of the 

generated emojis increases with an increase in the number of training iterations. Additionally, the emojis 

generated from the images exhibit a considerable level of diversity, with certain emojis displaying 

unconventional shapes that diverge from typical emoji usage, while others boast innovative and well-

defined shapes. As the number of training iterations increases, the generator and discriminator losses 

progressively stabilize and fluctuate within a specific range. 

GAN continuously optimizes the generator and discriminator through the game, making the 

generated images more and more similar to the real ones in distribution. Because the new emojis are 

randomly assembled from the training set, some of the generated fake images are not very logical, while 

some of the generated images successfully conform to people's usage logic. There are still some 

limitations to this result. For example, even if the number of iterations reaches 1000, the generated fake 

images are still not clear enough. Secondly, some of the images are generated from faces and hands, and 

the results do not conform to people's daily usage habits. Further screening of these strange images is 

required. 

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230126

190



 
 
 
 
 
 

4.  Conclusion 

The primary objective of this research paper is to employ deep learning techniques to generate a range 

of innovative emojis, thereby circumventing the exorbitant expenses associated with employing artists 

for their creation. In this study, the DCGAN approach is leveraged to learn from existing emojis on the 

network platform, train the generator and discriminator, and optimize parameters through the Adam 

optimizer to generate novel emojis. Through continuous iterations, a reasonably good generated image 

was produced. Upon examining the images, it is evident that some of the generated images are 

imaginative and visually striking. Moving forward, there exist several significant research opportunities 

to pursue, including collecting extant emojis in the human world for learning and ascertaining 

automatically whether the newly generated emojis conform to prevalent usage patterns. 
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