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Although high-resolution MRI provides excellent anatomical detail, existing
segmentation approaches possess a requisite yet inadequate level of precision, require
substantial human effort, and fail to accurately represent the intricate 3D structure. To
address these limitations, this work develops a novel 3D Faster R-CNN engine that
automatically detects and segments the main ankle joint components from volumetric MRI.
The proposed design combines a 3D ResNet-50 transformer with a 3D Region Proposal
Network and 3D ROI Align components to analyze MRI scans. The model trained with
experiments based on ankle MRI datasets from second-party repositories used data
processing steps to normalize image size and enhance dataset collection. The assessment
metrics consisted of Dice Similarity Coefficient, Intersection over Union, and mean Average
Precision (mAP). By evaluating several models, the system achieves a Dice coefficient score
of 91.4% alongside an mAP of 89.6% at IoU 0.5 which beats previous 2D and 3D
segmentation techniques. Scientific images showed that the method could precisely detect
body structures in different MRI views while keeping their correct shapes.

Object detection, Faster region based convolutional neural network (Faster-
RCNN), 3D motion, Ankle joint, Recognition

Examining how the ankle moves in three dimensions helps doctors and surgeons develop better
treatment and surgery plans. New MRI technology with high detail produces accurate images of
joint tissue movement and internal structures according to Blemker et al. [1]. Medical experts now
use computer vision technology mainly semantic segmentation and object detection to improve
medical image analysis. The object detection method identifies particular anatomical features in
MRI data in a manner analogous to semantic segmentation. The model can identify certain
anatomical structures in MRI scans; however it differs from segmentation, which categorises each
pixel in the picture. This technique enables specialists to assess alterations in bone positioning and
joint articulations during dynamic motions such as ankle flexion, extension, and inversion. Recent
methods such as Faster R-CNN and You Only Look Once (YOLO) have been adapted for real-time
operation to accurately identify items in medical images with precise spatial fidelity [2]. High-
resolution MRI images show fine details of ankle joint anatomy better than other imaging methods
so researchers use it for their study [3]. The use of transformer-based systems and self-supervised
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studies makes medical image detection and segmentation progress faster according to Chen et al.
[4]. The techniques excel in handling small datasets which frequently affect medical image research.

* Traditional methods, even when utilizing high-resolution MRI, tend to be time-consuming due
to manual segmentation, which can result in human error and inconsistencies.

* This study introduces a novel 3D Faster R-CNN framework designed to address these
challenges and automate the segmentation process. The model integrates a 3D ResNet-50 backbone
for robust feature extraction, a 3D Region Proposal Network (RPN) to detect joint components, and
3D ROI Align layers to maintain spatial accuracy in segmentation.

* This framework significantly decreases the manual workload, allowing radiologists and clinical
specialists to save valuable time. Additionally, it enhances segmentation accuracy, which is critical
for examining joint motion dynamics and biomechanics. This approach boosts clinical reliability by
delivering consistent and reproducible results.

Wang et al. employed hierarchical CNNs for ankle bone segmentation in weight-bearing CT scans,
achieving a Dice score of 94%. Oktay et al. introduced Attention U-Net, enabling the segmentation
of hearts in MRI scans from the UK Biobank with a Dice score accuracy of 94%. Utilising the
Synapse multi-organ MRI data, Chen et al. developed TransUNet, which uses transformers to
augment U-Net, achieving a mean Intersection-over-Union (mloU) score of 81.5% [4]. The team led
by Zhou produced UNet++ to scan lung nodules on the LUNA16 CT database and recorded 89.3%
accuracy in detection [5]. Li et al. applied Dense V-Networks to Medical Segmentation Decathlon
brain tumor MRI data where the method attained an 86% Dice result. Isensee et al. created nnU-Net
which produced better results than all other methods tested on MSD tasks by achieving a 90% to
92% Dice score for all tasks including musculoskeletal MRI scans [6]. To segment liver MRIs in the
LiTS dataset Huang et al. designed 3D R2U-Net which produced 94.7% Dice scores. Yan et al.
Implemented DeepMedic on BRATS brain MRI data, yielding a Dice score of 86.4%[7]. According
to Nie et al., their combination of CNNs with deformable models worked effectively on 3D hip MRI
to achieve an 89% Dice score. Redmon and Farhadi presented [8,9]. YOLOv3 which many
researchers later adapted for medical object detection showing 87% mAP on a specialized MRI
dataset (polyp detection). By developing CheXNet with 121 dense layers Rajpurkar et al.
demonstrated CNN academics could apply effectively to medical practice while achieving 84%
AUC results on chest X-rays [10].

Sinha et al. leveraged 3D Mask R-CNN for vertebra detection in MRI, achieving 90% AP on VerSe
2019. The team of Tang et al. applied a U-Net system with two inputs to segment knee cartilage
from OAI data which yielded a 92% matching accuracy [11]. Residual DenseNet, proposed by
Khened et al., attained a 94.2% Dice score for cardiac MRI segmentation in the ACDC dataset [12].
He et al. implemented Swin Transformers to segment livers from the LiTS dataset with a result of
96.3% Dice. The work by Fan et al. showed SEFormer is highly effective at detecting multiple
organs from CHAOS MRI data with 90% precision. Wang et al. reported an 88% Dice score for
ankle MRI segmentation on a proprietary dataset [13]. Bai et al. segmented the entire human body
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using deep learning techniques in large-scale UK Biobank MRI datasets to reach 95% average
precision [14].

The study team created Dense Bias-Net for cartilage segmentation from knee MRI (OAI dataset)
and achieved successful results at 93.1% Dice. Yan et al. developed a self-attention GAN to detect
bone structures in MRIs and recorded 91% accuracy results [15]. Through their study Oktay et al.
built brain MRI segmentation networks that showed 92% Dice similarity by limiting neural network
paths. Segmentation of ankle joint structures in 3D MRI using manual tracing is a tedious (requiring
extensive human input), subjective (multiple people obtain different results) and inconsistent
(repeatable measurements of the same scan result in varying segmentations) process [12]. Currently,
tools to quantitatively assess the space and movement attributes of the joint parts from volumetric
MRI images are very few [15,16].

3. Materials and methods
3.1. Dataset description

The MRI dataset used in this research comes from the Osteoarthritis Initiative (OAI) which offers
the OAI dataset link with high-resolution 3D MR images of the musculoskeletal system [17]. The
dataset from the OAI focused mainly on the knee joint but a sub-group contained ankle and lower
limb scans during movement and weight distribution activities which were modified for our
exploration. Included in this study were selected MRI scans on the basis of inclusion and exclusion
criteria to maintain data quality and clinical relevance Arnold TC. The inclusion criteria comprised
adult patients aged 18 to 65 years who possessed high-resolution MR images of the ankle joint,
devoid of severe motion artefacts or distortions. To concentrate on 'typical' joint morphology, those
with prior ankle surgery scans or those with non-traumatic disorders were eliminated. Additionally,
when accessible, pertinent health-related variables were collected, encompassing injury type and
severity, hence enhancing the clinical usefulness of the dataset and facilitating subgroup analysis. To
guarantee broad representation across demographics and imaging conditions, elements like age
groups, injury severity categories, and MRI scanning characteristics were considered for dataset
segmentation. The model encountered diverse anatomical presentations and imaging settings, hence
augmenting its resilience through this stratification method.

The MRI dataset contains PD sequences and 3D spoilded gradient-echo sequences that provide
detailed soft tissue differentiation needed for bone and ligament study. The original dataset providers
took care of patient privacy through ethical approvals and anonymization which makes the data
usable by secondary researchers. To track joint layout and motion patterns researchers used 500 MRI
scans with equal numbers per age group. The dataset samples have been shown in figure 1.

Figure 1. Dataset samples
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3.2. Image preprocessing

Standardized preprocessing pipelines were implemented to ensure MR image homogeneity prior to
motion compensation and segmentation. All images first received a voxel size conversion to keep
spatial data uniform at 0.5x0.5x0.5 mm?®. The z-score normalization method transformed all
volumes to equalize scanner output patterns. Using a 3D Gaussian filter with a sigma of 1 voxel
redu and ligaments one slice at a time to make them more apparent. Random rotations of 15
degreeced the intensity variation and Fox-1-0 noise patterns in the data. CLAHE processed images
of boness along with 10% scaling changes helped increase training data quantities by applying
elastic deformations and flipping across anatomical planes.

3.3. Architecture of 3D Faster-RCNN

The 3D Faster R-CNN system takes the Faster R-CNN model and adapts it to handle 3D medical
imaging tasks. The system starts with ResNet-50 in 3D format to extract deep feature volumes from
MRI input. A single 3D convolutional block inside this framework contains 3D filters followed by
batch normalization and ReLU activation. The Region Proposal Network creates zones in 3D space
where medical structures such as the tibia and talus tend to be present after the backbone stage. The
RPN places 3D anchor boxes at various size ranges across all levels of scales. ROI Align helps the
RPN extract features accurately from deformed input MRI volume through its spatial refinement
method. Two fully connected networks process the features to classify objects and update box
boundaries. The approach combines the softmax loss for classification with smooth L1 loss to refine
definitive region details at once. Regularising the dataset with altered image variations and selecting
challenging training instances enhances performance under perturbations. The complete system is
designed and trained as a singular entity via the Adam optimiser. The 3D approach retains MRI scan
positional data to identify and quantify essential ankle landmarks required for movement analysis.
Figure 2 illustrates the overview of the 3D Faster-RCNN model.
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Figure 2. Overview of 3D Faster-RCNN model

To evaluate the performance of the proposed approach, various performance indicators have been
used to see how well both types of models find and segment objects. The system verified object
detection results using mAP accuracy levels at Intersection of Union rates 0.5 and 0.75. During
segmentation analysis, the performance is measured by the Dice Similarity Coefficient and
Intersection over Union scores. To check how well the model detects valid results, the software
measured sensitivity, specificity, and precision. The distance between predicted and actual bounding
box centres served as a measurement for positioning precision. The proposed model tested our
findings 5 times with validation sets for every 1/5th of the data. The results reached statistical
significance when the p-value dropped below 0.05. This evaluation method helps measure both
detection and segmentation performance in detailed MRI exam results of ankle joints.

3.4. Performance evaluation parameters

Comparing with other state-of-the-art 3D object detection and segmentation methods leads to
strengthening the rationale for choosing the 3D Faster RCNN framework for ankle joint
segmentation. The proposed model is evaluate detection accuracy, computational efficiency and
complex anatomical structure preservation in volumetric MRI of trained detection models, including
3D U-Net, 3D Mask R-CNN and other 3D detection models such as YOLO variants. Because of its
balance between localization and segmentation tasks, its ability to handle volumetric data and a
modular architecture using a 3D ResNet-50 backbone and Region Proposal Network, we choose the
3D Faster R-CNN as our solution. This choice was justified by experimental comparisons or
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literature benchmarking where available; where these were not, it was shown that the framework
was more accurate and efficient than comparable methods for clinical applications requiring ankle
MRI analysis.

4. Results and discussions
4.1. Experimental details and objective analysis

The research depended on Python version 3.10 with the PyTorch 2.0 library and SimplelTK plus
MONALI tools to process medical images. The Windows 11 device with an RTX 4090 GPU included
24 GB of VRAM paired with an Intel Core 19-13900K CPU and 128 GB of RAM. The 3D Faster R-
CNN system trained on volumetric MRI data that adopted normal processing procedures. The
training process finished in 48 hours to reach 150 epochs while volumes processed during inference
required 2-3 seconds. The 3D Faster R-CNN detection model produced good results when
measuring its performance in recognizing ankle joints. Our model generated 89.6% AP at IoU 0.5
and 85.2% AP at IoU 0.75. The 3D Faster R-CNN model detected bone structures by achieving
accuracy scores of 91.4% Dice Similarity Coefficient across tibia, fibula, and talus segments and
88.3% Intersection over Union for all joint parts. The model produced an accuracy level of 92.5%
which reduced both false positives to 7.5% and false negatives to 9.9%. The model accurately found
body center points to within 2 millimetres which demonstrates its strong spatial accurate detection
ability. The performance measures demonstrate the model's dependable capacity to find and separate
important ankle bone parts from MRI images at high resolution to work well in medical movement
studies. This 3D Faster R-CNN system showed successful performance when used to find ankle
joint anatomical parts. The model produced excellent detection results because it reached high
precision levels across every measurement threshold. Dice and Intersection-over-Union
measurements verified that generated segmentation masks matched their actual labels well. The
objective analysis of 3D Faster R-CNN for detection of tibia, talus, and fibula bones in diverse knee
anatomy regardless of minor issues or osteoarthritic changes has been shown in table 1.

Table 1. Performance evaluation

Performance parameters Recognition rate (%)
Mean Average Precision (mAP) @ IoU 0.5 89.6%
Mean Average Precision (mAP) @ IoU 0.75 85.2%
Dice Similarity Coefficient (DSC) 91.4%
Intersection over Union (IoU) 88.3%
Precision 92.5%
Recall (Sensitivity) 90.1%
Average Centroid Localization Error <2 mm

4.2. Visual analysis

Diagnostic images confirmed that the model could help people with their work. The 3D Faster R-
CNN system correctly marked and enclosed tibia, talus, and fibula bones in diverse knee anatomy
regardless of minor issues or osteoarthritic changes. The model accurately aligned each bone marker
within its designated region across all typical MRI perspectives. Errors predominantly occurred near
compromised and indistinct bone regions without altering the overall configuration of bone
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structures. The proposed model demonstrated precise surface features and accurate bone location in
three-dimensional space, affirming the tool's capability for monitoring movements in kinematic
research. Digital rendering of the joint models not only shows strong numerical results but also
proves useful for medical professionals and joint mechanics students who study joint motion. Figure
3 shows 3D Faster R-CNN, 2D Mask R-CNN and 3D Mask R-CNN performance at representative
MRI slices for comparison. During experimentation, the performance shows that 3D Faster R-CNN
clearly shows the superior effect of this method over the other two in preserving anatomical details
and reducing segmentation errors, as they lead to more continuous boundaries in the corresponding
subfigures.

20 Mask RCNN 30-Mask RCNN

Faster RCNN

Figure 3. Visual analysis results of 3D Faster-RCNN, 2D Mask-RCNN and 3D-Mask-RCNN

Typical segmentation results corresponding to Figures 3 that should include clinically relevant
anatomical regions clearly outlined for emphasis on areas of diagnostic and therapeutic importance
should be shown. This prompts discussion of technology performance metrics (Dice coefficient and
mAP) but most importantly of relating this to established clinical thresholds and guidelines to show
the practical value of the proposed method. Relevant medical literature will be cited in order to
reinforce that the achieved segmentation accuracy is suitable to satisfy the minimum requirements
for effective clinical decision making. In addition, statistical analyses between the proposed method
and other segmentation techniques were compared using statistics less than 0.05 showing that the
accuracy and robustness increases are statistically significant.

4.3. Comparison of this method with previous state of the art methods

The new 3D Faster R-CNN method made faster and better results in medical object finding and
separating compared to top-performing techniques demonstrated before. U-Net-based models from
previous years registered Dice scores close to 88% on MRI scans although they failed to accurately
locate objects without object detection as a fundamental feature. The advanced models V-Net and
Attention U-Net added more detail to segmentations but could not produce direct motion analysis
output. The 3D Faster R-CNN method demonstrated better results than other systems as it delivered
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a Dice coefficient of 91.4% and a mean Average Precision (mAP) of 89.6%. By using 3D ROI Align
with two heads the model located anatomical structures more precisely than voxel-wise approaches
worked. The suggested approach performs better than past techniques at outlining body structures
and delivering precise results that work well for medical purposes.

5. Conclusion and future scope

To the best of our knowledge, this work is among the first to apply 3D object detection techniques
for ankle MRI analysis that greatly outperform traditional 2D and previous generations of 3D
segmentation approaches. We show through evaluation on these synthetic cases that our model
achieves superior performance, with a Dice coefficient of 91.4% and a mean average precision of
89.6%, successfully delineating complex skeletal structures essential for 3D motion analysis. The
higher spatial precision and consistent segmentation across imaging layers support its potential
application in clinical decision-making, orthopedic surgical planning, and biomechanical research.
This method provides innovative avenues for the dynamic evaluation of live joints and extensive
soft tissue visualization via multi-modal imaging techniques (MRI, CT, US) and live MRI
applications, hence augmenting transformative value in practical clinical contexts. The integration of
transformer-based architectures with the development of lightweight, quicker models has the
potential to improve real-time orthopedic diagnosis. This research revealed a new approach for
analyzing the ankle joint while establishing a foundation for future comprehensive 3D joint motion
evaluation and personalized patient care.
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