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Abstract. With the development of the times, computers are used more and more widely, and
the research and development of adder, as the most basic operation unit, determine the
development of the computer field. This paper analyzes the principle of one-bit adder and
floating-point adder by literature analysis. One-bit adder is the most basic type of traditional
adder, besides bit-by-bit adder, overrun adder and so on. The purpose of this paper is to
understand the basic principle of adder, among them, IEEE-754 binary floating point operation
is very important. So that the traditional fixed-point adder is the basis of the floating-point
adder, which can have a new direction in the future development of floating-point adder
optimization. This paper finds that the floating-point adder is one of the most widely used
components in signal processing systems today, and therefore, the improvement of the
floating-point adder is necessary.
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1. Introduction
Nowadays, human society has entered the information age, and various information computing and
storage technologies are the basis for the development of the information age. Computers,
microelectronics and communication technologies related to information technology are already the
core technologies that drive social progress.

In the microelectronic processing system, the basic quadratic operations (plus, subtract, multiply,
divide) can all be reduced to addition operations, so the adder is a very important arithmetic unit in
computer logic computing. In addition to this, the adder can also perform program counting and
calculate the effective address[1]. During the operation, the data is operated and stored in the form of 0
and 1. The data types are divided into fixed-point and floating-point. A floating-point representation is
widely used. According to Stuart F.Oberman, in floating-point operations, more than 55% of the basic
operations are floating-point addition operations, so the floating-point adder is one of the most
significant components of the microprocessor[2]. Fixed-point adders are the most basic and commonly
used part of various digital systems and are also fully used in floating-point operations. The tail
module in floating-point addition is essentially an addition operation of fixed-point numbers.
Therefore, understanding the fixed-point adder and designing a high-speed fixed-point adder is
essential to improve the performance of floating-point adders.
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This paper introduces the most basic one-bit adder in fixed-point adder by literature method and
summary and induction method to understand its internal principle and have a preliminary
understanding of the principle of adder. In the third part, the floating-point adder is introduced,
focusing on IEEE-754 binary floating-point operation standard. The research in this thesis can help
beginners to understand floating point adders and help in the subsequent research of high performance
floating point adders.

2. One-position adder
One-position adder is the most basic type of adder, and other higher performance adders are studied
based on this adder, which includes half adder and full adder.

2.1. Half adder
The input of the half adder does not take into account the feed from the lower bit and the output has
the feed from the higher bit.S0 is the sum of the inputs and R1 is the incoming output. Its logical
expressions are S0=A0⊕B0, R1= A0 ×B0.

Table 1. Half adder truth table[3].

A0 B0 S0 R1
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

2.2. Full adder
The full adder is summed from the input from the lower bit Ri and the two inputs Ai and Bi to get a
higher bit Ri+1and the current sum Si. Its logical expressions are Si = Ri⊕Ai⊕Bi, Ri+1= Ri × Ai+ Ri
×Bi+ Ai×Bi.

Table 2. Full adder truth table[4].

Ri Ai Bi Ri+1 Si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3. Floating point adder

3.1. The representation of floating point numbers
There are two methods of representing data in the logical operations of computers: fixed-point
numbers and floating-point numbers. The reason why floating point numbers are widely used is that
floating point numbers use the change of exponents within a certain range to change the position of the
decimal point as needed, thus representing larger real number range than the range represented by
fixed point numbers[5].
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The true value of a floating-point number consists of the ordinal base R (with the implied
convention of 2), the exponent-marker E and the mantissa M. The number sign indicates the positive
or negative of the number. The exponent-marker E is a fixed-point integer, represented by a
complement or shift code, whose number of bits determines the range of the value. The mantissa M is
a fixed-point decimal number, represented by the original or complementary code, and its digits
determine the precision of the number.

The IEEE-754 binary floating-point standard was developed by the Institute of Electric and
Electronics Engineers in 1985 and has been the industry standard for floating-point operations ever
since[6].

3.2. IEEE-754 binary floating point operation

3.2.1. Four formats. The IEEE-754 standard has four formats: Single precision floating-point
numbers, Double precision floating-point numbers, extended double-precision floating-point (SPARC),
and extended double-precision floating-point (x86).

Table 3. Bit distribution of four types of float[5]

Format Total number
of bits

Symbol bit
S

Exponent-marker
E

Mantissa
M

Single-precision
floating-point

32 bit 1 bit 8 bit 23 bit

Double-precision
floating-point

64 bit 1 bit 11 bit 52 bit

Extended
double-precision
floating-point
(SPARC)

128 bit 1 bit 15 bit 112 bit

Extended
double-precision
floating-point
(x86)

80 bit 1 bit 15 bit
63 bit+1 bit
(Explicit
leading
significant
digits)

3.2.2. Single-precision floating-point. Single-precision floating-point numbers have three intervals:
the 23-bit mantissa M, the 8-bit exponent-marker E, and the 1-bit sign S. Bits 0 to 22 in the 32-bit field
are the mantissa M, where bit 0 is the least significant bit of the mantissa, and the first bit to the left of
the mantissa decimal point must be 1. In floating-point addition calculations, the calculation is
generally achieved by a specific frame shift. Since the first digit of the specification is 1, the 1 before
the decimal point can be ignored when saving the trailing digit, and an extra binary bit is added to the
mantissa part to improve accuracy. Bits 23 to 30 are the exponent-marker E, where bit 23 is the least
significant bit of the exponent-marker. 8 bits of the exponent-marker can represent exponential values
between 0 and 255. The exponent can be either positive or negative. When the exponent is negative, a
deviation value (Bias=127) is introduced and the sum of it and the exponent value is used as the value
stored in the exponent field. The 31st bit is the sign bit, where negative numbers are represented by 0
and positive numbers are represented by 1.

3.2.3. Double-precision floating-point. A double precision floating point number has 64 bits,
including 53 bits for the mantissa M, 11 bits for the exponent-marker E, and one bit for the sign S. Bits
0 through 51 are the mantissa M, and bit 0 is the least significant bit of the mantissa. Bits 52 to 62 are
the 11-bit exponent-marker E, and bit 52 is the least significant bit of the exponent-marker. 11 bits of
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the exponent can represent exponent values between 0 and 2047. When the exponent is negative, a
deviation value (Bias=1023) is introduced, and the sum of the deviation value and the exponent value
is used as the value stored in the exponent field. The 63rd bit is the sign bit, where positive numbers
are expressed as 0 and negative numbers are expressed as 1.

3.2.4. Extended double precision floating point (SPARC). The SPARC floating-point format is a
quadruple precision format that occupies four 32-bit fields: 112 mantissa bits, 15 exponent-marker bits,
and 1 symbol bit. Bits 0 through 11 are the mantissa M, bits 112 through 126 are the exponent-marker
E, and bit 127 is the sign bit S.

3.2.5. Extended double precision floating point(x86). The extended double precision floating point
format (x86) numbers three consecutive 32 bits by 96 bits. Bits 0 through 63 store the 64-bit mantissa,
the 15-bit exponent-marker is stored in bits 64 to 78, and the sign bit is stored in bit 79. However, the
format actually uses only 80 bits, i.e., the higher 16 bits of the highest 32 bits of the address are not
used by the structure.

3.3. Traditional floating point addition algorithm
The basic algorithm of floating-point addition is to perform the operation of adding the trailing
numbers while ensuring that the exponent markers involved in the operation are the same size.

Suppose there are two floating point numbers A and B in double precision floating point format.
The operation flow is as follows.

a. Exponential subtraction: Compare the exponents of A and B and subtract them to get the
absolute value of the difference d. The absolute value d is the number of digits shifted by the smaller
mantissa in the following exponential alignment.

b. Exponential Alignment: Shift the mantissa of the smaller number to the right by d places so that
the exponents of the two numbers are aligned, i.e., the two numbers have the same exponent[7].

c. Add the valid digits of the mantissa: Add the valid mantissa of the 2 numbers according to their
signs, provided that A and B have the same exponent.

d. Conversion: The result obtained from the calculation is expressed in the form of a
complementary code. When the effective digit is negative, it is converted to the form of negative sign -
mantissa, and the trailing digit is expressed in the true code.

e. Mantissa specification: Shift the mantissa left or right according to the position of the first 1 in
the higher digit, and adjust the ordinate so that the mantissa format becomes 1.f[7].

f. Rounding: Round the final result, if the ingestion causes non-specification, the valid bit needs to
be shifted 1 bit to the right, and the ordinal code of the larger number is added 1.

4. Conclusion
This paper mainly discusses the principle of one-bit adder and IEEE-754 binary floating-point
arithmetic standard and analyzes the traditional algorithm of floating-point addition, especially the
four formats in floating-point arithmetic and their respective specific formats and differences between
each other. However, this thesis only introduces the basics of these arithmetic standards through a
brief summary of other literature and books. Still, due to time constraints, the actual research design of
the floating-point adder has not been mentioned yet. In future research, people can specifically explore
improving the existing floating-point adder and research a high-performance, low-power
floating-point adder.
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