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Abstract.  The 15-puzzle is a classic sliding puzzle consisting of a 4x4 grid with 15
numbered square tiles and one empty space. In 1974, Wilson generalized the 15-puzzle to
find the group of permutations on graphs. In this work, we provide a variation of a proof of
Wilson’s theorem, propose a result for 1-connected and disconnected graphs, find a new
manual algorithm for solving sliding graph puzzles, and extend existing computer
algorithms on the 15-puzzle to solve any sliding graph puzzle.
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1. Introduction

1.1. History of the 15-puzzle and its generalizations

The well known intellectual game with 15 numbered square counters has a ancient and remarkable
history. The game was created by Noyes Chapman and it was first appeared in the 1870s. It spread
quickly and soon it became extremely popular in the United States and Europe. This is W. Arens’s
comments on the influence of 15-puzzle:“Here you could even see the passengers in horse trams
with the game in their hands. In offices and shops bosses were horrified by their employees being
completely absorbed by the game during office and class hours. Owners of entertainment
establishments were quick to latch onto the rage and organized large contests. The game had even
made its way into solemn halls of the German Reichstag."In the 1900’s, many people worked
tirelessly to solve the problems related to the 15-puzzle, but actually some of them can be seen to be
unsolvable due to the power of mathematics. Of course, the most famous issue must be the problem
proposed by the impish puzzle maker Sam Loyd. He offered a prize of 1000 dollars for the first
correct solution to the problem however it has never been claimed.This is because it is impossible to
solve this challenge. People first proved it at the end of 19th century by permutation parity. In the
solved state, the permutation is even but swapping only 14 and 15 create an odd permutation.Since
then, many extensions of the 15-puzzle have been proposed and studied. [1] studied puzzles with
more than 1 empty space, [2] studied puzzles with tiles that are rotatable, and puzzles that allowed
rotation without an empty space were discussed in [3].A well-known generalization of the 15-puzzle
is that of R. M. Wilson in 1974, where numbered tiles are slid across edges in a graph. Formally,
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vertices are labeled with numbers, with one vertex labeled the empty space, and we are allowed to
swap a numbered label and an adjacent empty label.In his paper [4], he found the group of
permutations for non-separable simple graphs. His theorem is sometimes called Wilson’s theorem.

1.2. Contents and paper structure

Building on the generalization of the 15-puzzle onto sliding graph puzzles, we find the group of
permutations of labels on sliding graph puzzles that are simple and non-separable using similar ideas
as [4], by first finding the group on theta graphs and then inducting on the cyclomatic number. We
use a more direct approach in the proof, explicitly finding sequences of moves that carries out
certain permutations or generates certain groups. This aids the process of following this proof to
create a manual algorithm to solving any sliding graph puzzle. Following this manual algorithm, one
can theoretically carry out a sequence of moves to solve any scrambled state of any non-separable
sliding graph puzzle. The algorithm is recursive, reducing the cyclomatic number of the unsolved
portion of the graph until the problem is reduced to solving a theta graph, which is done directly.

We extend Wilson’s result on the permutation group for a non-separable graph to one that applies
to any finite simple graph, and present a new brief proof of the 1-connected and disconnected cases
by discussing the movement of tiles across articulation vertices. We also propose a generalization of
the manhattan distance metric to any sliding graph, and explore the performance of the A* and
suitably weighted A* algorithms in graphs with different cyclomatic numbers.

In section 2, we present an overview of the group theory and permutation groups needed in later
discussions. In section 3, we represent states of the 15-puzzle with a permutation and use group
theory to show that only states with even permutations can be achieved. In section 4, we show
Wilson’s generalization of the 15-puzzle and present our proof of Wilson’s theorem. In section 5, we
extend Wilson’s theorem to 1-connected, disconnected, polygon, and non-simple graphs. In section
6, we present a manual algorithm for solving any non-separable graph puzzle. In section 7, we
attempt to generalize A* algorithms on the 15-puzzle to solve any sliding graph puzzle. In section 8,
we end the paper with suggestions for future work.

2. A review of group theory and permutation groups

In this section, we introduce group theory and permutation groups to aid the discussion in later
sections. We see in section 3 and 4 that states on the 15-puzzle and sliding graph puzzles in general
can be represented as permutation, and group theory tools are useful for generating and constructing
certain permutation groups, such as that of     (see section 4.3).

2.1. Groups and relevant theorems

Definition 2.1. A subset     of a group     generates     if every element of     can be expressed as
a finite product of elements from     and their inverses.

Definition 2.2. A homomorphism is a function between two groups      such that  
 . An isomorphism is a bijective homomorphism. Two groups are isomorphic

if there exists an isomorphism from one group to the other.
Definition 2.3. The image of a homomorphism     is the subgroup     of    .

The kernel of a homomorphism     is the subgroup    .
Theorem (Lagrange theorem). For a finite group     and subgroup    ,     divides    .
Definition 2.4. A Sylow p-subgroup is a subgroup with order     for maximal    .

θ0

S G G G
S

φ : A ↦ B

φ(a ⋅ b) = φ(a) ⋅ φ(b)

Im(φ) {φ(a) : a ∈ A} B

ker(φ) {a : φ(a) = eB}

G H ≤ G |H| |G|

pk k
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Theorem (Second Sylow theorem). If     and     are 2 Sylow p-subgroups, then there exists    
with    .

Theorem (First isomorphism theorem). Let      is a group homomorphism. Then  
 . In particular,    .

2.2. Permutations and permutation groups

Definition 2.5. A permutation of a finite set is a rearrangement of its elements, defined as a bijective
function (a one-to-one and onto mapping) from the set to itself. A transposition is a permutation that
swaps two elements in a set while leaving all other elements unchanged.

Definition 2.6. A permutation is even if it can be expressed as a product of an even number of
transpositions. A permutation is odd if it can be expressed as a product of an odd number of
transpositions.

Definition 2.7. The symmetric group      is the group of all permutations of a finite set of    
elements. The group of all permutations on a set     is denoted by    . The alternating group  

   is the group of all even permutations of a finite set of      elements. It is a subgroup of the
symmetric group    . The alternating group on a set     is denoted by    .

Permutations can be expressed using cycle notation, where the elements in the brackets are in one
cycle. Each element maps to the next in the cycle, and the last element maps to the first. Every
permutation can also be written as a product of transpositions. Below is an example:

In this paper, we use the convention that permutations are evaluated from left to right, or in other
words, that the group action of     on     is a right action.

Proposition 2.8. The alternating groups     can be generated by 3-cycles.
Proof. By definition, every even permutation can be written as a product of an even number of

transpositions. Separating this product into pairs of transpositions, the following three cases arise,
where a,b,c,d are distinct elements:

1.     is the identity permutation
2.    , a 3-cycle
3.    , a product of 3-cycles
Since the product of every two transpositions can be expressed as a product of 3-cycles, it follows

that the alternating group     can be generated by all 3-cycles.  □
Proposition 2.9. The alternating group can be generated by    , where     and     are fixed

distinct elements, and    .
Proof. Since all alternating group can be generated by 3-cycles, we only need to prove    

can generate all 3-cycles.Let a and     be two fixed distinct elements in    . We show that any 3-
cycle      can be expressed as a product of 3-cycles of the form     , where  

 .Case 1:    If     are distinct from     and   , then:

P1 P2 g

gP1g−1 = P2

f : G ↦ H
G/ker(f) ≅Im(f) |G| = |ker(f)||Im(f)|

Sn n
X Sym(X)

An n
Sn X Alt(X)

(1,3, 7,2, 5,11,10,8, 4,9, 6,13)(14,15) =

(1,3)(1,7)(1,2)(1,5)(1,11)(1,10)(1,8)(1,4)(1,9)(1,6)(1,13)(14,15).

Sn [n]

An

(a, b)(a, b)

(a, b)(a, c) = (a, b, c)

(a, b)(c, d) = (a, b, c)(a, d, c)

An

(a, b, k) a b

k ∈ [n] − {a, b}

(a, b, k)

b [n]

(x, y, z) (a, b, k)

k ∈ [n] − {a, b} {x, y, z} ∩ {a, b} = ∅ x, y, z a b
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Case 2: If     share one element with   , we consider the following subcases:

Table 1. 

Case Expression

Case3: Two elements equal to a and b
If two elements of {x,y,z} are equal to a and b,we have:

(x, y, z) = (a, b, x)(a, b, y)−1(a, b, z).

x, y, z {a, b}

x = a (a, y, z) = (a, b, y)−1(a, b, z)

y = a (x, a, z) = (a, b, z)−1(a, b, x)

z = a (x, y, a) = (a, b, x)−1(a, b, y)

x = b (b, y, z) = (a, b, y)(a, b, z)−1

y = b (x, b, z) = (a, b, z)(a, b, x)−1

z = b (x, y, b) = (a, b, x)(a, b, y)−1
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Table 2. 

Case Expression

    and    

    and    

    and    

    and    

    and    

    and    

In all cases, any 3-cycle     can be expressed as a product of 3-cycles of the form  
 . Therefore, all 3-cycles can be generated by    .  □

3. The permutation group of 15-puzzle

In this section, we represent states of the 15-puzzle as permutations, and demonstrate that the set of
all legal permutations in the puzzle is isomorphic to  A15 .

According to definition 2.7, the set of all states of the 15-puzzle is a subgroup of  Sn . Here is an
example:

Figure 1. An example state of the 15-puzzle

We can represent this state of the 15-puzzle using cycle notation:

x = a y = b (a, b, z) = (a, b, z)

x = a z = b (a, y, b) = (a, b, y)−1

y = a z = b (x, a, b) = (a, b,x)

x = b y = a (b, a, z) = (a, b, z)−1

x = b z = a (b, y, a) = (a, b, y)

y = b z = a ((x, b, a) = (a, b,x)−1

(x, y, z) (a, b, k)

(a, b, k)
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When we consider that the position of the blank space remains unchanged between the initial and
goal states, the number of moves the blank space makes upward should be equal to the number it
makes downward, and the number of moves it makes left should be equal to the number it makes
right. Therefore, only when the initial state of 15-Puzzle that is an even permutation can be solved.
Therefore, the state where tiles 14 and 15 are swapped cannot be solved because it is an odd
permutation.

Using this logic, we only prove that the 15-puzzle is a subgroup of the alternating group, and we
still need to determine whether all even permutations can be solved. To prove that all even
permutations can be solved, we largely follow the process in [5] and we use Propositions 2.8 and 2.9
from the previous section.

Firstly, we construct a 3-cycle    . The initial state is shown at the beginning of Fig. 3.2.
By sliding these tiles, we generate the cycle    .

Figure 2. Process of generating (11,12,15)

The next step is constructing "the long cycle",  ρ  = (1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5). This
cycle is constructed by temporarily displacing tiles 11 and 12 from their original slots and do a
sequence of moves. we first change the position of the right bottom corner to that of Fig. 3.3 and
move all the tiles except 11 and 12 through the path shown in Fig. 4, and the 15-puzzle will look like
Fig. 5.

Figure 3. Configuration of the
bottom right corner before

applying the long cycle
Figure 4. A visual representation

of the long cycle

Figure 5. State of the 15-puzzle
after applying the long cycle

once

Finally, we restore the positions of 11 and 12 and this is the entire long cycle  ρ .
The purpose of  ρ  is to move a random tile k to the bottom right corner where the previous three

cycle (11,12,15) can act on them. For example, if we want to generate the cycle (3,11,12), we need
to apply  ρ10  to move the tile 3 to slot 15. Then we can apply the previous 3 cycle  (11,12,15) , but
tile 3 is at slot 15 so the cycle actually swaps tile 11 12 and 3, shown in Fig. 3.6. Finally, we only
need to apply  ρ−10 to restore all other tiles to their original positions and we can generate the cycle
 (3,11,12)$ , shown in Fig. 3.7.

σ = (1,3, 7,2, 5,11,10,8, 4,9, 6,13)(14,15).

(11,12,15)

(11,12,15)
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Figure 6. The 15-puzzle after permuting the
desired tiles

Figure 7. The 15-puzzle after
generating(3,11,12)

Through this example, we can see that by conjugating the fixed 3-cycle     with powers
of     , it can generate all 3-cycles of the form     , where     .
Proposition 2.9 has already proved that 3-cycle (a,b,k) can generate the alternating group    , so
together with the fact that the permutation group of the 15-puzzle is a subgroup of     , we can
conclude that the permutation group of 15-puzzle is isomorphic to    .

4. Puzzle group of generalized sliding graph puzzles

In this section, we will generalize the permutation group of the 15-puzzle following the discussion
in [4], and provide a variation of a proof of Wilson’s theorem so as to aid the discussion in section 6.

4.1. Generalizing the 15-puzzle

We introduce the following graph theoretic terms to generalize the 15-puzzle.
Definition 4.1. A graph is a collection of vertices (also called nodes) connected by edges. An edge

connects 2 vertices. An undirected graph is a graph where no edge has an associated direction. The
set of vertices of a graph     is often denoted as    .

Assume from now on that every graph considered is undirected.
Definition 4.2. A simple graph is an undirected graph without loops (edges connecting from a

vertex to itself), and any two edges must not have the same end vertices.
Definition 4.3. A path is a sequence of vertices     such that any     and     are

adjacent (connected by an edge). A simple path is a path with a non-repeating sequence of vertices.
Definition 4.4. A connected graph is a graph where there exists a path between any pair of

vertices. A disconnected graph is a graph that is not connected. An articulation vertex (also cut
vertex) of a connected graph is a vertex that, when removed, yields a disconnected graph. A non-
separable (also biconnected, 2-connected) graph is a connected graph with no articulation vertices,
or a graph with 1 vertex.

Definition 4.5. A bipartite graph is a graph such that each element can be labeled with ’a’ or ’b’
with every edge connecting between a vertex labeled ’a’ and a vertex labeled ’b’. Equivalently,
every path from a vertex to itself must have even length (pass through an even number of edges). A
non-bipartite graph is a graph that is not bipartite.

Let     be a finite simple graph and label the vertices with numbers, leaving one vertex blank as
the empty space    . This creates a 15-puzzle-like sliding graph puzzle.

(11,12,15)

ρ (11,12, k) k ∈ {1,2, … , 15} − {11,12}

A15

A15

A15

G V (G)

(x1,x2, . . . ,xn) xi xi+1

G

⌀
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Figure 8. The solved state of the 15-puzzle, represented by a graph with labels

Formally define a labeling on the graph      with      vertices as a bijective function  
   that maps every vertex to its label. Let      be a vertex such that  

 , let two labelings     and     be adjacent if     for some vertex  
   adjacent to      (meaning they are connected with an edge), and      for all vertices  

 . Define a move to be the relabeling of a graph by an adjacent labeling. Define the puzzle
group of a graph     by    , containing a permutation of     for every labeling     with  

   that can be reached from a sequence of moves starting with the solved state
labeling,     , under composition of permutations. This coincides with the homotopy group of the
graph. We denote the permutation of labelings e.g.     with vertices directly e.g.  
 .

We first prove the following useful proposition:
Proposition 4.6. Let     be a finite simple connected graph. Then given two solved states     and

   , the puzzle group with respect to     is isomorphic to the puzzle group with respect to    .
Proof. Let     and     be the puzzle groups with respect to     and     respectively.

We can create an isomorphism      by starting with the state     , moving the
blank space to    , carrying out a permutation     in    , and moving the blank space back to  

  along the same path. The permutation     corresponding to this must be in     since  
   can be reached with a sequence of moves, meaning      can as well. Since carrying out a

different permutation     must result in a different permutation    ,     is injective. If there exists a
sequence of moves bringing      to some     , corresponding to a permutation in     , then,
moving the blank space to     , there must be a sequence of moves corresponding to a
permutation in    , hence     is surjective. The following 2 processes are equivalent:

1. Moving the blank space to    
2. Carrying out    
3. Moving the blank space to    
4. Moving the blank space to    
5. Carrying out    
6. Moving the blank space to    
and

G n + 1
f : V (G) ↦ {1,2, . . . ,n,⌀} x

f(x) = ⌀ f g g(x) = f(y) and g(y) = ⌀ y

x f(k) = g(k)

k ∉ {x, y}

G PG {1,2, . . . ,n} f

s−1(⌀) = f−1(⌀)

s

f(a), f(b), f(c) (abc)

G s1

s2 s1 s2

PG(s1) PG(s2) s1 s2

φ : PG(s1) ↦ PG(s2) s2

s−1
1 (⌀) p1 s1

s−1
2 (⌀) p2 PG(s2)

p1 p2

p1' p2' φ

s2 f2 PG(s2)

s−1
1 (⌀)

PG(s1) φ

s−1
1 (⌀)

p1

s−1
2 (⌀)

s−1
1 (⌀)

q1

s−1
2 (⌀)
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1. Moving the blank space to    
2. Carrying out    
3. Moving the blank space to    
hence     , and so      is a well-defined homomorphism. Thus,      is an

isomorphism.  □
The puzzle group for any non-separable graph can be determined by the following theorem.

Wilson’s theorem is applied to puzzle groups as follows:
Theorem 4.7 Let     be a finite simple non-separable graph other than a polygon or the graph    

shown in Fig. 4.3. Then,    , unless     is bipartite, in which case  
 . If    , then     is a transitive

subgroup of     isomorphic to    .

Figure 9. A polygon graph Figure 10. θ0

Remark. When      is 1-connected (separable and connected), the puzzle group is no longer
transitive and this case is dealt with in Theorem 5.1.

4.2. Wilson’s theorem on theta graphs

To prove Theorem 4.7, we largely follow Wilson’s proof in [2]. It is sufficient to prove a weaker
result on theta-graphs, which are obtained by subdivisions of the graph shown in Fig. 4.4 that are
simple. Start with some arbitrary theta-graph, and attempt to generate the alternating group or
symmetric group from a sequence of moves. Denote a theta graph using the length of the simple
paths from x to y. For example, consider the (2,2,3) theta graph in Fig. 4.5, with    ,    ,    ,    ,    
denoting vertices.

Figure 11. Graph that is subdivided to obtain
theta graphs Figure 12. A (2,2,3) theta graph

Since the puzzle group stays unchanged when the solved state is changed, choose a solved state
such that     . In the example Fig. 4.5, let     . Consider the following 2
permutations     and     which are in     due to the sequences of moves
shown by listing the sequence of vertices the blank label is moved to:   

s−1
1 (⌀)

p1q1

s−1
2 (⌀)

φ(p1q1) = φ(p1)φ(q1) φ φ

G θ0

PG = sym(V (G) − {f−1(⌀)}) G

PG = alt(V (G) − {f−1(⌀)}) G = θ0 PG ⊂ sym(V (G) − {f−1(⌀)})

S6 S5

G

x y ai bi ci

s−1(⌀) ∉ {x, y} s−1(⌀) = c1

(a1a2yb3b2b1) (b3b2b1xa1a2) PG

c1,x, b1, b2, b3, y, a2, a1,x, c1
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and     respectively. (By moving the blank label along the above
sequence, we carry out the permutations in question.) Attempting to generate a group, we prove the
following lemma, also proposed in [4]:

Lemma 4.8. Let      and let permutations  
  and    . Then:

Proof. Instead of using the doubly transitive property of      in the proof in[4], we explicitly
construct all 3-cycles needed to apply Proposition 2.9, which will aid the discussion in section 6.Let
   . It is shown in [4] that the permutation

 .

We can deduce by symmetry and show that

 .

Consider the following permutations:

When     isn’t     (or a multiple of    ), we can generate any 3-cycle     where    

is any element in     by considering    

where      is the      element of     . By Proposition 2.9,     .Letting    
without loss of generality, discuss the excluded cases. When    ,     so  

  by Proposition 2.9. When    ,     is the identity, which is trivially
a subgroup of     . When     , consider  

   and     . Considering  

   where      is the      element of      like before, we

generate all 3 cycles     required for Proposition 2.9 to imply that    . When  
 , consider the 3-cycles     and     and use Proposition 2.9

to show that     . When     , consider  
   and      like before,

c1, c2, y, a2, a1,x, b1, b2, b3, y, c2, c1

S ≔ {x, a1, . . . , am, y, bn, . . . , b1}

p1 ≔ (a1a2 ⋯ amybn ⋯ b2b1) p2 ≔ (bn ⋯ b2b1xa1a2 ⋯ am)

⟨p1, p2⟩ =
⎧⎪⎨⎪⎩sym(S) (m + n odd, {m,n} ≠ {1,2})

alt(S) (m + n even, {m,n} ≠ {2,4},m,n ≠ 2)

S

n ≥ m ≥ 3

p3 = (xbm−1a1) = p−1
2 pm1 p

−1
2 p1−m

1 p−2
2 p1p

−1
2 p1p

2
2p

m−1
1 p−1

2 p2−m
1 ∈ ⟨p1, p2⟩

p4 = (ybn−m+2am) = p1p
−m
2 p1p

m−1
2 p2

1p
−1
2 p1p

−1
2 p−2

1 p1−m
2 p1p

m−2
2 ∈ ⟨p1, p2⟩

p5 = p−m
1 p−1

3 pm1 = (xya1)

p6 = pm2 p
−1
4 p−m

2 = (yxam)

p7 = p−1
5 p6p1p

−1
2 = (xa1b1)

p8(k) = p−k
1 p−1

7 pk1

k 0 m + n + 2 (xa1z) z

A = {a2, a3, . . . , am, y, bn, . . . , b2, b1} ∏j
i=1 p8(i) = (xa1z)

z jth A Alt(S) ≤ ⟨p1, p2⟩ m ≤ n

m = 0,n ≠ 0 (xybk) = pk2p
−k
1

Alt(S) ≤ ⟨p1, p2⟩ m = n = 0 Alt(S)

⟨p1, p2⟩ m = 1,n > 2

p3 = p2
1p

−2
2 p−1

1 p3
2p

−2
1 p−2

2 p2
1p2p

−3
1 p2

2 = (xa1y) p4(k) = p−k
1 p3p

k
1

∏j
i=0 p4(i) = (xa1z) z (j + 1)th {y, bn, . . . , b1}

(a1xz) Alt(S) ≤ ⟨p1, p2⟩

m = n = 1 p−1
1 p−1

2 = (yxb1) p1p2 = (yxa1)

Alt(S) ≤ ⟨p1, p2⟩ m = 2,n > 4

p3 = p−1
2 p−2
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concluding that     . When     , consider instead  
   and proceed as before.We have shown that for all

cases in the lemma,     . When      is even, both      and      are even
permutations so    . When     is odd, both     and    
are odd permutations so    .  □

The permutation group of any theta graph contains such elements      and     . Consider a
bipartite theta graph     that is not (2,2,2) or (2,2,4). Any choice of 2 simple paths from     to    
must have     even, otherwise a subgraph consisting of the 2 paths is a polygon graph of odd
length, which meaning      is not bipartite. Verify that we can always choose 2 paths  

  and     satisfying  
 , and assume that     for some     by Proposition 4.6. Defining     and     as before, it
follows by Lemma 4.8 that      must contain the permutation group of  

  which is    . Since this is an alternating group, it contains
the 3-cycles      for all     . We show that      by
generating the 3-cycles     for all    :Performing a sequence of
moves moving the blank label to     corresponds to a
permutation   . Conjugating the    -cycle     by a
power of      yields a 3-cycle      with      in the cycle notation of     . Thus, a 3-cycle  

  exists in     for    , and we can use Proposition 2.9 giving  
 . We prove the following proposition to show that equality holds:

Proposition 4.9. The puzzle group of a simple finite connected bipartite graph      must be a
subgroup of    .

Proof. Consider any sequence of moves from the solved state to a labeling      such that  
  . There must be an even number of moves since the graph is bipartite,

corresponding to a permutation in     (containing the empty vertex) which can be written
as an even number of transpositions. The resulting permutation must be even and fixes    , so    
must be a subgroup of    .  □

So,    .Now, consider a non bipartite theta graph graph     that is not
(1,2,2). We can now choose 2 paths      and      satisfying  

  assuming that     for some    .     contains     by
Lemma 4.8, so we can find a transposition     for    . Conjugating     by a power
of    , we reach every transposition     for     in the cycle
notation of     , and thus every transposition      for      is in     . This
generates the symmetric group    .

4.3. Considerations for exceptional theta graphs

For the special cases excluded from the above discussion, we discuss each of them individually.

Alt(S) ≤ ⟨p1, p2⟩ m = 2,n = 3

p3 = p2p
−1
1 p−2

2 p−1
1 p−2

2 p−1
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ci, ci+1, . . . cj, y, bn, . . . , b1,x, c1, . . . , ci
p3 = (xb1 ⋯ bnycj ⋯ ci+1ci−1 ⋯ c1) ∈ PG 3 (a1a2y)

p3 (a1a2k) k p3

(a1a2k) PG k ∈ V (G) − {a1, a2, f−1(⌀)}

PG ≥ Alt(V (G) − f−1(⌀))

G

Alt(V (G) − f−1(⌀))
f

s−1(⌀) = f−1(⌀)

Sym(V (G))

⌀ PG

Alt(V (G) − f−1(⌀))

PG = Alt(V (G) − f−1(⌀)) G

(x, a1, . . . , am, y) (x, b1, . . . , bn, y)
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Figure 13.A (2,2,2) theta graph Figure 14.A (2,2,4) theta graph Figure 15. A (1,2,2) theta graph

Let     be the (2,2,2) theta graph shown in Fig. 4.6 and let    . Define the permutations  
 ,    , and    , noting that they are all in    . [4]

considered a 3-cycle generated from similar permutations, but we consider an easier way to generate
a 3-cycle    . We can now conjugate     by powers of     and use
Proposition 2.9 and the fact that     is bipartite to conclude that    .Let  

  be the (2,2,4) theta graph shown in Fig. 14 and let    . Define    ,  
  , and      in     . Consider the 3-cycle  

  . Conjugating by a power of     , we conclude that  
 .Let     be the (1,2,2) theta graph shown in Fig. 15 and let  

 . Define    ,    ,    ,    , and claim that
    contains all permutations corresponding to a sequence of moves fixing the position
of the blank label. Consider an arbitrary sequence of moves represented by a sequence of positions
of the blank label. Assume that this sequence never ’backtracks on itself’, i.e. there is no consecutive
    in the sequence for 2 vertices    . This is reasonable since canceling the     has no effect
on the permutation of labels. Split this sequence of positions for every instance of      not at the
beginning or end. Each subsequence must correspond to      or its inverse,      or its inverse, a
power of     , or a power of     . So the above claim is true.Now, consider the permutation  

  . We claim that this, along with      generate a transitive
subgroup of     isomorphic to     with the following proposition:

Proposition 4.10. The subgroup     is isomorphic to    .
[4]constructed this group by considering the action of the group of linear fractional

transformations     on the set    . We follow the construction in [6] instead:
Proof. Consider all the subgroups of     with order 5:

These are all the Sylow 5-subgroups of    , since no subgroups of order     exist by Lagrange’s
theorem. By the Second Sylow theorem, there exists an element     with     for any

G f(b2) = ⌀

p1 = (ya2a1xb1) p2 = (yc2c1xb1) p3 = (a2a1xc1c2) PG
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1 p−1

3 p2p
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p1 = (ya2a1x) p2 = (yc2c1x) p3 = (a2a1xc1c2) p4 = (c1c2ya2a1)
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p1 p2

p3 p4
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−1
2 p2

1 = (a2c2)(a1x)(c1y) p3
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H = ⟨(15)(23)(46), (12345)⟩ < S6 S5
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P1 = ⟨(12345)⟩
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g ∈ S5 g−1Pig = Pj



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluation
DOI:	10.54254/2755-2721/2025.PO25579

129

    , meaning      can act transitively on the set      of Sylow 5-subgroups by conjugation.
Consider the homomorphism from this group action     . The kernel of      must be
normal, so it is isomorphic to     ,     , or the trivial subgroup.      must be a transitive
subgroup of     , so it has order at least 6. By the first isomorphism theorem,  

 , so it follows that    . So the isomorphism
from      to      is an isomorphism between      and     .We show now that  

  . The generator      corresponds to an element    
satisfying     ,
so    . The generator     corresponds to an element  
   satisfying  
 , so    . So,    . But the elements     and     generate    ,
so the elements      and      generate     , meaning  

 .  □
We show that    :

So,     . Since this group is transitive,      is a transitive subgroup of    
isomorphic to    .

4.4. Inducting on the cyclomatic number

We complete the proof of Theorem 4.7 by inducting on the cyclomatic number  
  , discussing bipartite and non-bipartite graphs separately. We prove the

following theorem, first introduced in [7], to help with induction:
Theorem 4.11. Let     be a simple finite non-separable graph and denote its cyclomatic number

by    . Suppose that     is a non-separable proper subgraph of     with cyclomatic number
    . Then we can write     , where      is a subgraph of      with cyclomatic
number 0 and     consists only of the ends of A.

Proof. Take any subgraph     satisfying the properties in the theorem, and let     be the number
of vertices in     but not in    . Since     has cyclomatic number    , the number of edges
in     but not in     must be    . Since     is non-separable, the edges and vertices not in    
must connect to at least 2 vertices in    . Let     include the edges and vertices not in    , and the
vertices in     connected to an edge not in    . Since     must have cyclomatic number 0, it must be
possible to obtain     from subdivisions of the graph below:

Figure 16. Graph which is subdivided to obtain A

Since     is non-separable, the ends of this graph must be in    . If any other vertices in     are
in    , the cyclomatic number of     increases by 1, making     have cyclomatic number  

i, j S5 X
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 . So, we can write     where     consists only of the ends of A.  □
We now begin the induction, constructing explicitly the permutations required to generate the

puzzle group, without relying on the doubly transitive property of      used in [4] and [8].The
bipartite case: Having proven that Theorem 4.7 is true for bipartite non-separable graphs with
cyclomatic number 2 (which are the theta graphs), we assume that Theorem 4.7 is true for bipartite
non-separable graphs with cyclomatic number     . Take an arbitrary bipartite non-separable
graph of cyclomatic number      and write      by Theorem 4.11, creating a bipartite
graph      of cyclomatic number      whose puzzle group is     . Since
this graph is bipartite, by Proposition 4.9,     is a subgroup of     and    
does not contain    . Letting     and     be the ends of    , let the simple path
from     to     in     pass through vertices    , and find a simple path from     to     in  

  that do not pass through some     in    , letting it pass through vertices     (One
can verify that this is always possible). Assuming     by Proposition 4.6, we can move the
blank space to vertices      to create a permutation  

 . Conjugating the 3-cycle     by a power of     can create
all 3-cycles     for    . Together with the fact that     and by
Proposition 2.9 and Proposition 4.9,     .The non-bipartite case: Ensure
first that given a graph with cyclomatic number 3 containing a subgraph     , that we can always
write     where     a non-bipartite graph that is not    . Consider all such possible types
of graphs, highlighting in red components in      that are not in   , and highlighting in blue the
components (possibly and sometimes necessarily subdivided) that could have been removed to yield
  

H=θ0. The below consideration is omitted in [4] and partially omitted in [8]:

Figure 17. All possible cases where  could be chosen as the subgraph H

Assume that Theorem 4.7 is true for non-bipartite non-separable graphs with cyclomatic number  
 . Take an arbitrary non-bipartite non-separable graph     with cyclomatic number     and

we can always write      where      is a non-bipartite graph of cyclomatic number    
whose puzzle group is     (Since    ). Letting     and     be the
ends of    , let the path from     to     in     pass through vertices    , and find a path
from      to      in      that do not pass through some     , letting it pass through vertices  

  (One can verify that this is always possible). As before, we can create a permutation  
  . Conjugating the transposition      by a power of      can

create all transpositions      for      which, together with the fact that  
  , generate the symmetric group  

 .Theorem 4.7 is now proved.
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5. Extensions of Wilson’s theorem

In this section, we extend Theorem 4.7 to 1-connected, disconnected graphs, and polygon graphs.
This consideration has already been made by [7] on another theorem in [2], and [10] considered the
one-connected case without proof. We give a new brief proof of Theorem 5.1 in this section, an
extension of Theorem 4.7:

Theorem 5.1. Let     be a finite simple graph. If     is a non-separable graph that is not a
polygon,     , unless      is bipartite, in which case  

 . If    , then     is a transitive
subgroup of      isomorphic to     . If      is a polygon,      is
isomorphic to the cyclic group     . If      is 1-connected (separable and connected) with non-
separable components     ,      is the direct product     , where      is a non-separable
component of     . If      is disconnected,      is the puzzle group of the connected component
containing    .

Proof. If     is non-separable and is not a polygon, this is Theorem 4.7. Let     be a polygon of
length     with vertices labeled     to     and    . Then, the only paths from     to    
without ’backtracing on itself’ is      and its reverse, corresponding to  

   and its inverse. It follows that     .Let      be a 1-connected
graph with non-separable components      and let     . Since      is
connected, there exists a sequence of moves bringing the blank label to some vertex     such
that no other vertex in this sequence belongs in    . Then, we can carry out a sequence of moves
corresponding to permutations in    , and move the blank label back to     using the same
path. This implies that     . Since the graph is 1-connected, the blank space cannot pass
through any articulation vertex twice in the same direction as there does not exist a path between the
2 components not passing through the articulation vertex, so the permutations in     and any other
component must be disjoint. So with      and     ,     , hence      is a normal
subgroup. So,     is the direct product of all non-separable components    .If     is disconnected,
then the labels of the connected components of     that do not contain     cannot move, and
so     is the puzzle group of the connected component of    .  □

We can also extend further and consider puzzle groups of undirected, non-simple graphs.
However, loops and extra edges do not affect the puzzle group of the graph, so the puzzle group of
some finite undirected graph is the puzzle group of the simple graph obtained from removing loops
and extra edges. This has also been considered in [2].

6. A manual algorithmic solution to sliding graph puzzles

In this section, we provide a method to solve any sliding graph puzzle with a non-separable graph,
using ideas from the proof of Theorem 4.7, and adopting a recursive approach.The objective is to
algorithmically carry out a sequence of moves that returns a scrambled state     to a solved state    .
Considering non-separable graphs only, we can find a path from     to    . Moving the
blank label along this path, we reach a scrambled state      such that     . We then
find a sequence of moves bringing     to    . First, we show that for both non-bipartite graphs and
bipartite graphs, we are able to perform recursion until the graph we need to solve is a theta graph.
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6.1. The non-bipartite case

Assume that      is non-separable, non-bipartite, not a polygon, and has cyclomatic number  
 . By Theorem 4.11, we can continuously write     such that     is non-

bipartite. We ’solve’      by performing transpositions until      for all     ,
where      are the 2 ends of     . To perform such a transposition on labels      for  

 ,    , we:
1. Find a cyclic path     passing     and     and not passing through some     as in the proof

of Theorem 4.7 above.
2. Transpose     and     by recursion since    
3. Move the blank label to    
4. Conjugate the transposition     inside     by    , a power of the permutation resulting from  

  moving     to    
5. Move the blank label back to    
6. Transpose     back
After     is ’solved’, we can solve the graph     recursively, moving     into     and back by

Proposition 4.6 if     . Note that if the permutation we need is on labels  
   with     , we can find      and carry out     .Below is an

example of solving a non-bipartite graph puzzle using the above algorithm:

Figure 18. An example of solving an arbitrary sliding graph puzzle recursively

6.2. The bipartite case

For a bipartite, non-separable graph     that is not a polygon and has cyclomatic number  
  , we write      and solve      by performing 3-cycles until      for all  

  , where      are the 2 ends of     . To perform such a 3-cycle on labels  
  for    ,    :

1.  Find a cyclic path      passing      and      and not passing through some      (not
necessarily distinct from    ) as in the proof of Theorem 4.7
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• If we could find     and    , there is no need to do any permutation
• If     but     (or vice versa), find a distinct vertex     and carry out    
• If     and    , carry out  
2. Move the blank label to    
3. Conjugate the 3-cycle     by    , a power of the permutation resulting from    , moving    

to    
4. Revert all other permutations and moves carried out
After     is solved, we solve the graph     recursively. Note that if the permutation we need is on

labels      and     , find a distinct      and carry out     . If  
 , then find distinct     and carry out    .

6.3. Solving theta graphs

We need to generate any transposition on a non-bipartite theta graph      and any 3-cycle on a
bipartite theta graph to successfully carry out the algorithm. For the below discussion, assume that  

   has been moved to      by the proof of Proposition 4.6, and will be moved back after the
permutation is applied.For a bipartite theta graph, we can follow the proof for Proposition 2.9 and
express the 3-cycle as a product of 2 3-cycles in the form     , and then follow the proof of
Theorem 4.7 to express each      as      conjugated by an appropriate power of  

   if      for some     . In any case, follow the proof of
Lemma 4.8 to generate      for      for any      by a product of
permutations     as defined in the proof, expressing the original desired 3 cycle as a combination
of      and      and their inverses. We can then move the empty space according to the proof of
Theorem 4.7 to carry out permutations      and     .For a non-bipartite theta graph     , to
perform any transposition     we choose 2 paths from     to     with     odd as in the proof
of Theorem 4.7, and express      such that      are in the 2 paths. Carry out  

   by performing      as defined in Lemma 4.8, and returning all elements other than      by
carrying out 3-cycles in the same way as the above procedure for bipartite graphs. Since the
resulting permutation is odd, it must be     .To solve a theta graph     , we can carry out 3-
cycles and a transposition if needed using the above process to return the graph to the solved state.
To solve     , following the proof of Proposition 4.10, map the permutation      of labelings
bringing     to the solved state     onto an element     by considering what conjugate    
is equal to. Express     as a product of transpositions and express this as a product of transpositions
adjacent in the cycle     . Express each transposition as      conjugated by a power of  

 , and map this back to the puzzle group to reach an expression of     in terms of     and  
  . Following the proof of Proposition 4.10, express instances of      as     , and we can
perform the sequence of moves corresponding to this permutation to solve the puzzle.

7. Generalizations on existing algorithms to sliding graph puzzles

In this section, we attempt to generalize computer algorithms to solve any sliding graph puzzle. The
15-puzzle is a popular test bed for path finding algorithms, and many efficient and optimized
algorithms for solving the 15-puzzle have emerged over the years. Usually, such solvers use the A*
algorithm or Iterative deepening A* (IDA*) algorithms, with common heuristic function for best
first search algorithms being manhattan distance, linear conflict, and walking distance. However,
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many techniques being used in 15-puzzle solvers are difficult to generalize.Letting     and     denote
the scrambled and solved states respectively, we can implement the manhattan distance heuristic on
any sliding graph puzzle by finding the shortest distance from     to     and summing
across all labels     excluding    . However, as the complexity of the puzzle (which can be described
by the cyclomatic number) decreases and the number of nodes increase, the advantage of best-first
search over breadth-first search decreases. Table 7.1 shows the average of the number of expanded
nodes when finding a solution over 500 random scrambled states.

Table 3. A comparison between A* and BFS algorithms for three graphs

Graph Cyclomatic
number

Expanded nodes (A* w/
manhattan

Expanded nodes
(BFS)

Percentage
Decrease

(2,2,3) theta graph 2 48152.3 185222 74.003%
8-puzzle 4 2017.29 84869.2 97.623%

8-puzzle, diagonal movements
allowed 12 1492.69 162282 99.080%

Given the additional time required in computing the manhattan distance metric for each expanded
node, the A* algorithm using the manhattan distance heuristics can sometimes be worse than the
BFS algorithm time-wise. A possible reason why the manhattan distance heuristic performs so badly
for low complexity graphs is because it severely underestimates the remaining number of moves,
and the relative error of the heuristic      tends to 1. The effective branching factor    
approaches the branching factor    , and the time complexity approaches    , that of BFS (see
[10]).Sacrificing the optimality of solution, we can improve efficiency by using a rough estimate of
the remaining moves. We multiply the manhattan distance heuristic by an appropriate constant    ,
which we calculated by averaging the ratio between the manhattan distance heuristic and the number
of actual moves required across a random sample of scrambled states. This weighted A* turns the
algorithm pessimistic, but as shown by the table below, solutions remain near-optimal solutions
while runtime decreases:

Table 4. A comparison between A* and Weighted A* algorithms for three graphs

Graph Expanded nodes
(A*)

Expanded nodes
(WA*)

% decrease
(nodes)

% increase (solution
moves)

Weight
W

(2,2,3) theta graph 48152.3 27540.3 42.806% 16.82% 4.0
Fig. 6.1 31332.7 9691.50 69.069% 6.96% 2.0

    puzzle, diagonal
movements allowed 67138.1 3336.26 95.031% 4.80% 1.4

8. Conclusion and further prospects

We end this paper with several suggestions for future work.In section 5, we presented some
straightforward extensions of Wilson’s theorem, deducing the group of permutations for 1-
connected, disconnected, cyclic, and non-simple graphs. A possible point of interest is to extend
further and find this puzzle group for directed graphs.In section 6, a manual algorithm was
developed, capable of solving any sliding graph puzzle with a non-separable graph. It could be
interesting to develop similar manual algorithms for other generalizations of the 15-puzzle and
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sliding graph puzzles, such as the sliding graph puzzle with where tiles can rotate. Another possible
focus is on a specific family of graphs, such as theta graphs.The algorithm presented in section 6 has
numerous inefficiencies and has considerable room for improvement. Due to the heavy reliance on
performing 3-cycles and transpositions, which often take hundreds of moves on graphs with a low
cyclomatic number, solutions to scrambled states developed using this algorithm are often
unnecessarily long. A topic of interest is to develop an efficient algorithm that can solve any sliding
graph puzzle, while staying human-solvable.The heuristic used in the A* algorithm implementation
in section 7 can possibly be improved upon. It is evident that using only manhattan distance as a
heuristic leaves the A* search algorithm lost, especially on graphs with lower complexity.
Furthermore, with a heuristic that does not correspond well with the actual number of remaining
moves, even the weighted algorithm has a tendency to waste moves. This was especially observed
for low-complexity graphs such as the (2,2,3) theta graph. We wonder if there exists a more suitable
heuristic for general sliding graph puzzles.
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