Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

Data Analysis with Python: Methods, Tools and Practices-

Data Processing, Visualization and Prediction Based on
Python

Ruidi Wei

Beijing Jiaotong University Weihai Campus, Weihai, China
wrd75390@gmail.com

With the growing influence of artificial intelligence, the Internet of Things, and
cloud computing, data analysis has moved from a supportive tool to playing a central role in
business innovation. Python, thanks to its open-source framework and wide range of
libraries, has become a favorite tool among data analysts. This paper focuses on how Python
can be applied to real-world financial data, taking Xiaomi Corporation’s stock history as an
example. Using libraries such as Pandas, Matplotlib, and mplfinance, we walk through the
steps of data cleaning, calculating technical indicators like moving averages and the Relative
Strength Index, and producing clear visualizations to observe market trends. Beyond the
technical implementation, this study shows how Python can help users uncover meaningful
patterns in stock data, improving the basis for investment decisions. The case study
illustrates that even complex datasets can be handled smoothly with the right tools, and
Python’s simplicity, flexibility, and community support make it especially suited for this
kind of task.

Python, Data Analysis, Data Visualization, Predictive Analytics, Stock Data

Python, as a programming language, has become essential for data analysis across various fields due
to its open-source nature and extensive ecosystem of libraries [1, 2]. The use of Python in the field
of data science has seen a sharp rise, particularly in industries such as finance and healthcare [3]. It
has established itself as the de facto tool for tasks ranging from simple data cleaning and
visualization to complex machine learning models [4]. Python's libraries, including Pandas, NumPy,
and Matplotlib, provide comprehensive solutions for data processing, statistical analysis, and
visualization, making it an indispensable tool for both academics and industry professionals.

This paper focuses on Python's application in financial data analysis, specifically examining
historical stock data from Xiaomi Corporation (stock code: 1810.HK). The research question centers
on how Python can be leveraged for efficient data processing, visualization, and predictive analytics
in the financial sector. Through the use of Python’s rich libraries, this study explores the process of
cleaning stock data, calculating technical indicators like moving averages (MA) and the Relative
Strength Index (RSI), and visualizing stock trends.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

112

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

The methodology involves data extraction from historical records, followed by cleaning,
calculation of indicators, and visualization using tools such as Pandas, Matplotlib, and mplfinance.
The significance of this study lies in its demonstration of Python’s practical utility in enabling
deeper insights into financial market dynamics. By providing a framework for stock price trend
analysis, this research highlights Python’s potential to improve decision-making and predictive
capabilities in financial analysis.

The evolution of data analysis has always been closely intertwined with technological innovation.
The traditional statistical stage (from the 1960s to the 1980s) was dominated by closed-source tools
such as SAS and SPSS, focusing on hypothesis testing and regression analysis. However, their high
cost and code closure limited their popularity [5]. In the 1990s, the open-source movement gave rise
to the R language. Its rich statistical packages (such as ggplot2) promoted the reproducibility of
academic research. However, the shortcoming of engineering deployment made it difficult to
integrate into the enterprise production environment [6].

Entering the 21st century, the advent of the big data era has completely restructured the analytical
pattern. Distributed frameworks such as Hadoop and Spark have solved the problems of storage and
computing of massive data, while data science has developed as an independent discipline,
emphasizing the full life cycle management from data collection to insight implementation [7].
During this process, the tool ecosystem has undergone significant differentiation: Excel has
gradually retreated to marginal scenarios due to its inability to handle unstructured data; Python has
become the "greatest common divisor" of both academia and industry due to its open-source nature
and cross-disciplinary capabilities (such as NumPy and Pandas). However, traditional tools such as
SAS have seen their market share continue to shrink due to their closed ecosystem and high costs
[1]. This evolution reveals the transformation logic of data analysis from a "closed professional tool"
to an "open-source and inclusive technology."

The popularity rate of Python shows a "two-way penetration" feature in both the academic and
industrial fields. In the academic field, a survey by the Nature journal shows that more than 68% of
data science papers implemented algorithms using Python between 2019 and 2023. The main reason
for this is that the interactivity of Jupyter Notebook facilitates the rapid verification of hypotheses
[2]. In the industrial sector, Python implements distributed processing of terabytes of data through
libraries such as PySpark and Dask and is used by enterprises like Amazon and Netflix for user
behavior analysis and real-time recommendation systems [§].

However, technical challenges also emerge along with large-scale applications: Firstly, the
explosion of data scale leads to the memory bottleneck of a single machine. Research proposes to
optimize I/O efficiency through Dask parallelization or Arrow columnar storage [9]; Secondly, the
real-time requirements drive the integration of stream processing frameworks (such as Katka+Flink)
with Python, but the concurrent limitations caused by the GIL (Global Interpreter Lock) still need to
be mitigated with the help of multi-processes or C extensions [3]. Furthermore, the emergence of
domain-specific tools (such as the biomedical library Biopython) reflects Python's continuous in-

113

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

depth development in vertical scenarios. To conclude, Python is systematically addressing the
escalating complexity of data analysis through ecological collaboration and technological iteration.

3. Python data processing, visualization, and analysis process

Based on the historical data of Xiaomi Corporation (stock code: 1810.HK) provided by
Investing.com, text and numerical data visualization is implemented using Python.

3.1. Data reading and data cleaning

First, read historical stock data from a CSV file using the pandas library, and specify the date
column as the index. At the same time, remove the English format thousands separator. Since the
data is arranged in chronological order, for the missing data, use the forward fill method to handle it,
ensuring the continuity and stability of the time series.

The specific code is as follows:

file path ='1810.csv'

if not os.path.exists(file path):

raise FileNotFoundError(f'File {file path} not found. Please check the path and file name.")
df = pd.read_csv(

'1810.csv',

parse_dates=['Date'],

index col="Date’,

thousands=",'

)

df.sort_index(inplace=True)
df.ffill(inplace=True)

3.2. Data processing and visualization

To more effectively evaluate stock trends and market sentiment, this paper calculates the following
two mainstream technical indicators:

Moving Average (MA):

The moving average reflects the average value of prices within a certain time range and is often
used to identify price trends. This paper calculates the 5-day and 20-day simple moving averages
(SMA).

The specific code is below:

df'MAS'] = df]'Close'].rolling(window=5).mean()

114

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

df'MA20'] = df['Close'].rolling(window=20).mean()

Relative Strength Index (RSI):

RSI is a momentum indicator used to measure the strength of price increases and decreases, and
to identify overbought and oversold conditions.

The specific code is as follows:

delta = df]'Close'].diff()

gain = delta.clip(lower=0)

loss = -delta.clip(upper=0)

avg_gain = gain.rolling(window=14).mean()
avg_loss = loss.rolling(window=14).mean()
rs = avg_gain/ avg_loss

dff'RSI'T= 100 - (100 / (1 + rs))

When the RSI is above 70, the market may be in an overbought state; when it is below 30, it may
be in an oversold state.

Visualization: This article uses the mplfinance library to draw candlestick charts with technical
indicators, achieving an intuitive display of stock price trends. This library focuses on financial time
series charts and supports the overlay of technical indicators. At the same time, the Charles style is
used, setting the color to red for rises and green for falls, making the chart more aesthetically
pleasing.

The specific code is as follows:

try:

mpf.plot(

mpf df,

type='candle’,

style=mpf style,

addplot=add_plots,

volume=True,

figratio=(12, 8),

title="Stock Price Analysis (Date Format: YYYY/MM/DD)',

ylabel='Price (CNY)',

115

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

ylabel lower='Volume',

datetime format="%Y/%m/%d'

)

plt.show()

except Exception as e:
print("Plotting failed. Error details:")
print(e)

3.3. Data analysis

The generated graph is shown below. Here are the corresponding analysis.

Stock Price Analysis (Date Format: YYYY/MM/DD)

Figure 1. The output result of the code

3.3.1. Price trend analysis

From the candlestick chart in the main image, it can be seen that the stock has shown a clear
medium to long-term upward trend overall. Especially from the middle to the right side of the chart,
the stock price has risen from around 20 yuan to a peak close to 60 yuan, with a considerable
increase. Technically, the short-term (MAS5) and medium-term (MA20) moving averages have
maintained an upward trend for a long time, and MAS has crossed above MA20 multiple times,
further confirming the sustainability of the upward trend. During some periods, although the price
fluctuated and pulled back, it never fell below the MA20 line, demonstrating a strong support effect.

3.3.2. Volume changes and market activity

The blue column chart located below the price chart represents the daily trading volume, reflecting
the level of market participation. During the period when the price accelerates upward, the trading
volume expands simultaneously, indicating a large amount of capital flowing in and high investor

116

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

sentiment. The upward trend is supported by trading volume and has a certain degree of
sustainability. However, in some high-price areas, a reduction in trading volume occurs, suggesting
that the upward momentum is beginning to weaken and market sentiment is becoming cautious.
Especially before the stock price adjustment in early 2025, the trading volume once sharply
increased, which might reflect the concentrated exit of funds or profit-taking behavior.

The RSI curve at the bottom of the chart depicts the overbought and oversold conditions of the
market. It can be seen from the chart that during the upward movement of the stock price, the RSI
has repeatedly risen above 70, entering the overbought zone, which indicates that the price may be
overvalued and there is a short-term risk of adjustment. The actual trend also confirms this:
whenever the RSI exceeds 70, the stock price often experiences a decline to varying degrees.
Conversely, when the RSI drops to around 30, it is often accompanied by a halt in the decline and a
rebound in the price, creating a good buying opportunity. Therefore, the RSI indicator in the chart
reflects the short-term mood swings of the market quite well and is an important supplement to the
price trend.

By integrating price trends, moving averages, trading volume, and the RSI indicator, this chart
presents the entire process of a stock from its consolidation at the bottom to the breakout of a trend,
followed by a pullback and then a rebound. The coordination of moving averages provides a basis
for judging medium and short-term trends, trading volume reveals market activity and capital flow,
while the RSI effectively indicates whether the price is overheated or too cold in the short term.
Overall, the stock maintains an upward momentum in the medium- and long term, but there are
occasional high-level fluctuations and technical adjustments.

The advantages of Python as a data analysis tool are reflected in many aspects, especially in
handling large-scale data and generating visual charts. In this analysis of the historical stock price
data of Xiaomi Corporation, the powerful library support of Python has made data cleaning,
calculation of technical indicators, and trend analysis more efficient and convenient.

Firstly, the Pandas library in Python offers powerful data processing capabilities. We can easily
read data from CSV files, handle missing values, and sort and fill data with Pandas, ensuring the
continuity and stability of the data. This process is more flexible and efficient than traditional tools
like Excel; especially when dealing with large-scale datasets, Python can provide higher
performance and lower memory usage.

Secondly, Python has a distinct advantage in calculating technical indicators. For instance, with
Pandas, we can quickly calculate the 5-day and 20-day simple moving averages (MA) of stocks, and
use the same tool to calculate the relative strength index (RSI). These technical indicators are crucial
for stock analysis and trend judgment, and Python's concise code and powerful function library
significantly reduce the difficulty of implementing these analytical tasks.

In addition, visualization libraries such as Matplotlib and mplfinance in Python have made data
presentation more intuitive and aesthetically pleasing. In this stock price analysis, we used
mplfinance to draw candlestick charts and overlay technical indicators, making the stock market
trends more clearly visible. This visualization effect not only improves the efficiency of the analysis
but also helps us better understand market dynamics and investor sentiment.

117

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

In conclusion, Python's open-source code, powerful library support, and efficient data processing
capabilities make its advantages in data analysis very obvious. Whether in data cleaning,
computational analysis, or data visualization, Python has demonstrated its great potential as a tool
for data science.

5. Conclusion

This article explored the application of Python in financial data analysis, particularly focusing on
how to leverage its powerful data processing and visualization capabilities to analyze the historical
stock data of Xiaomi Corporation. By utilizing libraries such as Pandas, Matplotlib, and mplfinance
in Python, we successfully accomplished data cleaning, technical indicator calculation, and the
visualization of stock market trends. These operations not only demonstrated the efficiency and
flexibility of Python in data analysis but also highlighted its strong support in complex analytical
tasks.

As an open-source programming language, Python has become one of the mainstream tools in the
field of data science thanks to its rich ecosystem and extensive community support. In this study, the
advantages of Python are reflected in multiple aspects: Firstly, it has a powerful data processing
capability, especially when dealing with large-scale data, it can complete complex tasks through
concise code; Secondly, Python provides a wealth of visualization tools, making the results of data
analysis more intuitive and facilitating a deeper understanding of the trends and patterns behind the
data; Finally, Python also supports seamless integration with other tools and platforms, further
enhancing its application potential in various data analysis and prediction tasks.

Through this research, we have found that Python has broad application prospects in financial
data analysis, which can help analysts quickly gain in-depth insights into the market and make more
accurate investment decisions. In the future, with the continuous advancement of technology, Python
will play an increasingly important role in more fields and become a core tool for data analysis and
decision support. Overall, Python is not just a programming language; it is a powerful platform that
drives the development of data science and intelligent analysis.

References

[11] McKinney, W. (2017). Python for Data Analysis. O'Reilly Media.

[2] Pérez, F., et al. (2023). The Jupyter Notebook as a Research Tool. Nature Methods.

[3] VanderPlas, J. (2018). Python Data Science Handbook. O'Reilly Media.

[4] Waskom, M. (2021). Seaborn: Statistical Data Visualization. Journal of Open Source Software, 6(60), 3021.

[5] Cleveland, W. S. (2001). Data Science: An Action Plan for Expanding the Technical Areas of Statistics.
International Statistical Review.

[6] Tippmann, D. (2015). R for Data Science. Springer, Heidelberg.

[7] Dhar, V. (2013). Data Science and Big Data Analytics. Wiley.

[8] IDC. (2022). Market Trends and Insights on Data Science Platforms. IDC Report.

[91 Rocklin, M. (2015). Dask: Parallel Computation with Blocked Algorithms. Journal of Open Source Software.

[10] McKinney, W. (2012). Pandas: A Foundational Python Library for Data Analysis and Statistics. Python for Data
Analysis. O'Reilly Media.

[11] Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90-95.

[12] Beckley, P. (2019). Data Science with Python. Addison-Wesley Professional.

[13] Perez, F. and Granger, B. E. (2007). IPython: A System for Interactive Scientific Computing. Computing in Science
& Engineering, 9(3), 21-29.

118

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

Appendix

The complete code involved in the article is as follows:

import pandas as pd

import matplotlib.pyplot as plt

import mplfinance as mpf

import os

1. Data Loading

file path ="1810.csV'

if not os.path.exists(file path):

raise FileNotFoundError(f'File {file path} not found. Please check the path and file name.")
df =pd.read_csv(

file path,

parse_dates=['Date'],

index col='Date’,

thousands=",' # Automatically remove thousand separators

)

df.sort_index(inplace=True)

df.ffill(inplace=True)

Set standard column names

df.columns = ['Open', 'High', 'Low', 'Close', "Volume']

Force convert Volume to integer, drop rows with invalid data
df.dropna(subset=['"Volume'], inplace=True) # Remove rows with NaN in Volume
Print check results

print("Number of rows:", len(df))

print("First few rows:\n", df.head())

if df.empty:

119

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

raise ValueError("DataFrame is empty after cleaning! Volume column may contain a lot of non-
numeric data. Please check the contents of 1810.csv.")

Rename columns again to ensure standard names
df.columns = ['Open', 'High', 'Low', 'Close', 'Volume']

2. Calculate Technical Indicators

df'MAS'] = df]'Close'].rolling(window=5).mean()
df'MA20'] = df['Close'].rolling(window=20).mean()

delta = df]'Close'].diff()

gain = delta.clip(lower=0)

loss = -delta.clip(upper=0)

avg_gain = gain.rolling(window=14).mean()

avg_loss = loss.rolling(window=14).mean()

rs =avg_ gain/avg loss

dff'RSI'T=100 - (100 / (1 + rs))

3. Prepare Plot Style and Data

Only pass OHLCYV data to main plot

mpf df = df[['Open’, 'High', "Low', 'Close', "Volume']].copy()
Set chart style

mpf style = mpf.make mpf style(

base mpf style='charles',

marketcolors=mpf.make marketcolors(up="red’, down='green'),

rc={'font.family': '"Microsoft YaHei'}

)
Add MA and RSI plots
add plots =

mpf.make addplot(df['MAS5'], color="blue', panel=0),

120

Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P025726

mpf.make addplot(df['MA20'], color="orange', panel=0),
mpf.make addplot(df['RSI'], color="purple', panel=2, ylabel='"RSI")
]

#4. Plot

try:

mpf.plot(

mpf df,

type='candle',

style=mpf style,

addplot=add plots,

volume=True,

figratio=(12, 8),

title="Stock Price Analysis (Date Format: YYYY/MM/DD)',
ylabel='Price (CNY)',

ylabel lower="Volume',

datetime format='%Y/%m/%d'

)

plt.show()

except Exception as e:

print("Plotting failed. Error details:")

print(e)

121

