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Despite extensive special education investments, their causal impact on
elementary mathematics remains debated due to confounding factors in observational data.
This study leverages causal machine learning models, including Bayesian Additive
Regression Trees (BART) and Causal Forests, to estimate heterogeneous effects of special
education on elementary mathematics achievement. Using longitudinal data from 7,362 U.S.
students (ECLS-K:2011), we implement a four-stage pipeline: (1) LASSO-PLS
preprocessing for covariate selection and dimension reduction; (2) Propensity Score
Matching (PSM) to address selection bias; (3) BART for Bayesian treatment effect
estimation; and (4) Causal Forests for subgroup analysis. Results show no significant
average treatment effect (ATE = -0.69, p=0.707) after matching, but reveal critical
heterogeneity: students with mid-range kindergarten math ability (MIRT 50-70) gain 6-8
points, while public schools’ buffer negative effects for low-ability learners. Family
background factors show no moderation effect. These findings demonstrate that special
education's efficacy depends fundamentally on academic readiness, supporting precision
resource allocation in educational policy.

Causal Machine Learning, Heterogeneous Treatment Effects, early childhood
longitudinal study kindergarten 2011 (ECLS-K:2011), Bayesian Additive Regression Trees
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The importance of early intervention and tailored teaching approaches is crucial for students with
special needs. Elementary mathematics is a foundational skill that significantly influences academic
achievement and long-term educational outcomes [1]. Research shows that early math proficiency
predicts future success in STEM fields and socioeconomic status [2]. Despite approximately 7.5
million U.S. students aged 3-21 receiving special education services under IDEA during the 2022-23
school year—representing 15% of total public school enrollment—students with disabilities often
face unique cognitive and instructional challenges that hinder their mathematical development,
raising questions about the effectiveness of special education programs in addressing these issues [3,
4].

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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These challenges underscore the need for evidence-based interventions that are flexible and
systematically applied. Special education techniques such as explicit instruction, hands-on learning
tools, and assistive technology have shown promise in enhancing mathematical understanding for
students with disabilities [5]. However, it should also be considered that students assigned to special
education are usually taught mathematics that is different from that of regular education students [6].
This could correspond to Lekhal’s research in Norway finding that special education had little effect
on improving standard math exam scores [7]. Ethical constraints preclude the use of Randomized
Controlled Trials (RCTs) to assess the impact of special education services, necessitating reliance on
observational study designs for empirical investigation. The observed differences in the
aforementioned studies regarding the effects of special education on mathematical performance
highlight a fundamental challenge in observational research—the difficulty in disentangling true
intervention effects from spurious associations [8]. Causal inference allows researchers to move
beyond simple statistical associations by accounting for confounding variables and constructing
valid comparison groups [9, 10]. In education policy evaluation, such methods are essential for
assessing the effectiveness of interventions [11]. At present, there are relatively few explorations
based on causal inference to verify the effectiveness of special education in mathematics
performance. Furthermore, socioeconomic status and educational background are well-established
predictors of math achievement [12]. However, whether these factors differentially affect distinct
subgroups within the special education population remains unexplored.

To rigorously examine the causal impact of special education on mathematics performance and
investigate potential effect heterogeneity across socio-economic and educational background
subgroups, this study employs longitudinal data from the Early Childhood Longitudinal Study
Kindergarten 2010-11 cohort (ECLS-K:2011). Causal inference based on treatment effect will be
introduced to verify the causality of special education on elementary mathematics outcomes. After
data processing, the fundamental pipeline follows a "fit model + compute treatment effect" approach
to achieve robust causal inference [13-15]. Traditional machine learning models with statistical
interpretability such as Ordinary Least Squares method (OLS), Weighted Least Squares Regression,
Bayesian Additive Regression Trees (BART), and Causal Forest will be employed.

The article is structured in the following manner: in Section 2, we first introduce the framework
of causal inference. Hence, we introduce the combination of causal inference and traditional
machine learning models by literature review. In Section 3, we employ an appropriate baseline
model to verify the significance level of causal relationship under strong assumptions. Then
Propensity Score Matching (PSM) techniques will be applied to eliminate selection bias [16]. Next,
Bayesian-based models will be assessed to check the consistency of Frequentist and Bayesian
Statistics [17]. After the identification of causality, Section 4 details further analysis of
heterogeneous based on sub-population focusing on socioeconomic status and educational
background. In Section 5, we present and analyze the causal effect estimates, evaluating their
statistical significance through p-values and confidence intervals. In Section 6, we draw our
conclusions.

The primary objective of causal inference is to estimate the causal effects of treatments on
outcomes, moving beyond mere correlation analysis. Modern causal inference is built upon two
foundational frameworks: Rubin's Potential Outcomes Model and Pearl's Causal Diagrams [18, 19].
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As a cornerstone of this field, the Potential Outcomes Framework establishes three key assumptions:
(1) Stable Unit Treatment Value Assumption (SUTVA), which states that an individual's outcome
remains unaffected by the treatment status of other individuals; (2) Ignorability, meaning that
treatment assignment T becomes independent of potential outcomes when conditioned on covariates
X; and (3) Overlap, ensuring that every individual has a non-zero probability of receiving either
treatment or control [18]. Under these assumptions, causal effects can be formally quantified.
The Average Treatment Effect (ATE) measures the expected outcome difference between treated and
untreated groups across the entire population. Mathematically, let Y (¢) and Y (c¢) denote potential
outcomes under treatment and control conditions:

ATE = E[Y (t) — Y(c)]

The Conditional Average Treatment Effect (CATE), on the other hand, estimates treatment effects
within subpopulations defined by covariates X, expressed as:

CATE = E[Y (t) - Y (c) | X]

The CATE allows for heterogeneous treatment effect analysis, revealing how causal effects vary
across different sub-segments of the population.

To address potential imbalances and selection bias between treatment and control groups,
Rosenbaum and Rubin introduced the Propensity Score Matching (PSM), defined as

G(XZ) = PT‘(TZ' = 1|Xl)

representing the probability of receiving treatment given observed covariates X. [20]. By
matching individuals with similar propensity scores across groups, researchers can approximate the
conditions of a randomized experiment, thereby reducing confounding. Empirical studies have
demonstrated that this approach yields estimates comparable to those from Randomized Controlled
Trials (RCTs) in observational research [21-23].

Recent years have witnessed a growing interest in integrating causal inference methodologies with
traditional machine learning (ML) techniques for observational studies. This interdisciplinary
approach has emerged as a powerful solution for addressing fundamental challenges in causal
identification and estimation.

The methodological evolution in this field can be traced through several key developments.
Rosenbaum and Rubin pioneered the use of Propensity Score Matching (PSM) through logistic
regression, establishing a robust framework for addressing selection bias in observational data [20].
Building on this foundation, Athey and Imbens introduced causal trees, adapting decision tree
algorithms for causal inference tasks [24]. This innovation was further advanced by Wager and
Athey through the development of causal random forests, which implied random forests learning
techniques into causal inference to determine heterogeneous effects [25]. Additionally, Hill et al.
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demonstrated the robustness of Bayesian Additive Regression Trees (BART) in estimating causal
effects of medical coverage on health outcomes, highlighting the potential of Bayesian based model
for causal inference.

Traditional ML models - including linear regression, logistic regression, and decision trees - offer
distinct advantages for causal analysis due to their statistical interpretability [26, 27]. These methods
provide essential inferential tools such as significance testing (p-values), confidence interval
estimation, and hypothesis testing capabilities. Such features enable researchers to rigorously assess
the robustness of estimated causal relationships, explaining their widespread adoption across social
science research [28, 29].

3. Data description and preprocessing
3.1. Data description

The analysis uses the Early Childhood Longitudinal Study Kindergarten 2010-11 cohort (ECLS-
K:2011) dataset, collected by the National Center for Education Statistics (U.S. Department of
Education). After standard preprocessing (including the removal of cases with missing key variables
and outliers), our analytical dataset includes 7,362 students, in which 429 received special education
services by fifth grade (treatment group) and 6,933 did not (control group). The binary treatment
indicator, FSSPECS, equals 1 if a student received any special education and 0 otherwise. Our
outcome, COR4MSCL, is the continuous fifth-grade math assessment score, which ranges from 50.9
to 170.7. We will use a set of 34 covariates to adjust for confounding. These variables include six
domains: Demographic, Academic, School composition, Family context, Health, and Parent rating
of child. These covariates enable us to control various factors that may influence the likelihood of
receiving special education services and math achievement.

3.2. Data preprocessing

Before causal inference analysis, we carried out three preprocessing steps to clean the ECLS-K:2011
dataset, select the most relevant covariates, and reduce their dimensionality in a supervised manner.
The entire process was implemented in R (version 4.3.1).

3.2.1. Variable selection via LASSO

Since our dataset involves 34 pre-treatment covariates, to prevent overfitting and focus on the most
outcome-predictive features, we used Least Absolute Shrinkage and Selection Operator (LASSO)
Regression to select the covariates that best predict the outcome [30, 31]. All covariates were first
standardized to mean zero and unit variance. We then fitted a penalized linear model by solving,

1 n p
min— Z(yz —Bo— X[ B)* +7\Z Bl
=1

BB T

Where y; is student 7 ’s math IRT score, X; is the vector of covariates, and A is the tuning
parameter adjusting the strength of the L1-penalty. Then, we use 10-fold cross-validation to select
Amin that minimizes the mean squared prediction error [32]. Thus, LASSO can perform variable
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selection and reduce multicollinearity. This process balances bias and variance by discarding weak
predictors while keeping those with strong relationships to the outcome.

3.2.2. Supervised dimension reduction with PLS

To condense LASSO-selected predictors into a small number of orthogonal, outcome-relevant
features, we further utilize Partial Least Squares (PLS) regression [33]. PLS can construct each
latent component t; = Xwp to maximize the covariance between the predictor scores t; and the
response y [34]. We fitted a PLS model with up to 10 components, using 10-fold cross-validation
to get the Root Mean Squared Error (RMSE). The RMSE curve flattened after five components,
suggesting that PLS1-PLS5 captures the most covariance between our covariates and the fifth-grade
math score. Therefore, we build our final analysis dataset by combining the outcome (C6R4MSCL),
the treatment indicator (FSSPECS), and these five PLS scores. These components are uncorrelated,
relevant to the predicted outcome, and do not suffer from the multicollinearity problems that may
exist in high-dimensional causal models.

3.2.3. Diagnostic visualizations

To demonstrate the effect of dimension reduction, we compare before-and-after correlation
structures and examine the PLS components themselves. We compared the raw 34-variable
correlation matrix and the reduced correlation matrix (outcome, treatment, and PLS components) in
Figure 1, illustrating that the five components are largely orthogonal and remove spurious
correlations. We also performed a quick PCA on this correlation matrix to confirm that each PLS
component aligns with distinct, high-variance directions in Figure 2, validating that our supervised
reduction successfully captured the dominant covariate patterns without redundancy.
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(a) Original 34 variables (b) After dimensionality reduction

Figure 1. Correlation heatmap
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Figure 2. Validation plots

Together, these preprocessing steps ensure that our causal inference models operate on a compact,
orthogonal set of covariates that are both predictive of the outcome and robust against confounding,
thereby laying a solid foundation for unbiased ATE and CATE estimation.

4. Methods

With a set of five orthogonal covariates, we proceeded to estimate both Average Treatment Effects
(ATE) and Conditional Average Treatment Effects (CATE). We have included the following
methods: (1) Linear regression with the Ordinary Least Squares method (OLS), (2) Propensity Score
Matching (PSM, including logistic regression, k-nearest neighbor algorithm), (3) Bayesian Additive
Regression Trees (BART) and (4) Causal Forest.

4.1. Ordinary least squares regression

We first specify a baseline linear regression model to estimate the average treatment effect (ATE).
The model is formulated as:

5
Y; =Bo+PB1Di+ Y _viPLS); + &,
k=1

where Y; is the outcome variable (C6R4MSCL), D; 1is the binary treatment indicator
(F5SPECS),  PLS); are the first five supervised PLS components summarizing our
LASSO-selected covariates, and ¢€; is the error term. Ordinary Least Squares (OLS) was used to
estimate parameters by minimizing the sum of squared residuals [35]. Because the PLS components
are by construction orthogonal, multicollinearity is essentially eliminated; nonetheless, we computed
Variance Inflation Factors (VIFs) and confirmed that all were well around 1. The coefficient t thus
provides an OLS-adjusted estimate of the ATE under the standard assumption of no unmeasured
confounding.

4.2. Propensity score matching

To approximate a randomized experiment and mitigate selection bias, we implement Propensity
Score Matching (PSM) [20, 36]. The propensity score for each student is defined as the probability
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of receiving special education services conditional on their pre-treatment covariates:
e(X;) = Pr(D; = 1|X;)

Here D; is the binary indicator for special education (FSSPECS) and X; is the vector of five
orthogonal PLS components (PLS1-PLS5). We estimate e(X;) via logistic regression, fitting

e(X:)

log— "4
T e(X)

= Oy —f— akPLSkﬂ-

5
k=1

Using these estimated propensities, we perform one-to-one nearest-neighbor matching without
replacement, imposing a caliper of 0.2 standard deviations of the logit of the propensity score to
avoid poor matches [20, 37]. After matching, we verify covariate balance by comparing standardized
mean differences for each PLS component before and after matching, visualized via a love plot in
Figure 3.
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Figure 3. Love plot
4.3. Bayesian additive regression trees

To provide a fully Bayesian complement to our nonparametric forests, we implement Bayesian
Additive Regression Trees (BART) [38]. BART represents the outcome surface as a sum of
regression trees,

m=1

M
Y; = Zg(XuTma%m) + &, €i~N(07 02)

where each tree T3, with terminal node parameters .4, captures a piecewise—constant
adjustment and M is chosen large (e.g.\ 200) to allow flexibility.

We fit two separate BART models in an “augmented” framework for causal inference, one is
“Control Model” Y(0) that fits to units with D; =0 (D; is the binary indicator for special

252



Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P0O25845

education), and the other is “Treatment Model” Y (1) that fits to units with D; = 1 . These are
estimated jointly via Markov Chain Monte Carlo, drawing posterior samples of each tree ensemble.
The Average Treatment Effect (ATE) is then computed as the posterior mean of

15w 7))

i=1

4.4. Causal forest

The Causal Forest model is an extension of the Random Forest model, designed to predict the
relationship between outcome variables and covariates by constructing multiple decision trees [39].
During the training process, each tree randomly selects features and samples, enabling the model to
effectively capture complex nonlinear relationships and interactions within the data.

In addition to addressing nonlinearity, this model is particularly well-suited for estimating the
variation in treatment effects across different individuals or subgroups. Causal Forest model
provides a more nuanced understanding of the specific distribution of treatment effects by
estimating Individual Treatment Effects (ITE). Let us denote the outcome variable as Y, the
treatment variable as D, and the covariate variables as W. We can represent the model prediction for

each individual as ?z () . The ITE for the i-th individual is defined as:
ITE; = ¥i(Wi, Di =1) - ¥,(W;, Di =0)

The distributional information derived from ITE estimations can facilitate a range of valuable
statistical inferences. Furthermore, the ATE can be estimated by taking the mean of the ITE
estimates.

5. Results and analysis

5.1. Descriptive statistics

Table 1. Sample characteristics (mean + SD or %) for treatment vs. control

Math Score PLS1 PLS2 PLS3 PLS4 PLS5
Control 128.19 (£ 021 (£
(526933) 22.67) 2.36 (& 39.35) 420, 001(+1638) 0.06(%1207) 0.01 (&461)
_ 108.97 ( + -38.10 (& 0.17 (£ 102 (£ 0.17 (£
Treated (n=429) 26.80) 42.95) 344 (£15.30) 18.22) 12.49) 4.77)
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Figure 4. Density of the math outcome by treatment group

Table 1 and Figure 4 jointly highlight significant pre-treatment imbalances between treated and
control groups, with a nearly 19-point gap in average math scores and substantial differences in
PLS1, which captures academic and health characteristics, along with smaller but consistent
disparities in PLS2-PLSS5; the density plot further illustrates that treated students are concentrated in
lower score ranges, reinforcing the necessity of applying matching or other adjustment techniques to
ensure unbiased causal estimates.

Table 2. Sample characteristics (mean + SD or %) for treatment vs. control

Math Score PLS1 PLS2 PLS3 PLS4 PLS5
Control 128.19 (£ 021 (£
(526933) 72.67) 2.36 (+39.35) 420, 001(+1638) 0.06(%1207) 0.01 (&461)
_ 108.97 ( + -38.10 (& 0.17 (£ 102 (£ 0.17 (£
Treated (n=429) 26.80) 42.95) 344 (£15.30) 18.22) 12.49) 4.77)

The Ordinary Least Squares method (OLS) estimate for the treatment indicator (FSSPECS) is
-1.60 (SE=0.57, p=0.0048), indicating that, after adjusting for the five PLS components, students
who received special education services score on average 1.6 points lower in fifth-grade math than
their non-treated peers. The model explains about 77.5% of the variance in math scores, and the
orthogonality of the PLS covariates keeps multicollinearity at bay.

However, this OLS result remains an associational estimate. It relies on the strong assumption of
no unmeasured confounding: any omitted variable correlated with both treatment assignment and
the outcome could bias 7Tors . Furthermore, the linear specification may fail to capture
nonlinearities or interactions in how covariates affect math achievement. For these reasons, we
complement OLS with nonparametric and matching-based methods in further sections to obtain
more robust causal estimates.
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5.2.1. Ordinary Least Squares (OLS)

Table 3. OLS estimates of the average treatment effect on math scores

Estimate Std. Error t-value p-value
Intercept 127.165 0.134 952.45 <0.001
Treatment -1.605 0.569 -2.82 0.0048
PLS1 0.473 0.003 144.81 <0.001
PLS2 0.463 0.009 51.06 <0.001
PLS3 0.098 0.008 12.46 <0.001
PLS4 0.098 0.011 9.12 <0.001
PLS5 0.209 0.028 7.47 <0.001
R? 0.775
Adj. R? 0.774
Observations 7,362

The OLS estimate for the treatment indicator (FSSPECS) is -1.60 (SE=0.57, p=0.0048),
indicating that, after adjusting for the five PLS components, students who received special education
services score on average 1.6 points lower in fifth-grade math than their non-treated peers. The
model explains about 77.5% of the variance in math scores, and the orthogonality of the PLS
covariates keeps multicollinearity at bay.

However, this OLS result remains an associational estimate. It relies on the strong assumption of
no unmeasured confounding: any omitted variable correlated with both treatment assignment and
the outcome could bias 7Tors . Furthermore, the linear specification may fail to capture
nonlinearities or interactions in how covariates affect math achievement. For these reasons, we
complement OLS with nonparametric and matching-based methods in further sections to obtain
more robust causal estimates.

5.2.2. Propensity score matching

Table 4. PSM estimates of the average treatment effect on math scores

Estimate Std. Error t-value p-value

Survey-weighted regression (svyglm) -0.687 1.822 -0.377 0.706
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Figure 5. Boxplot comparing the math outcome between treatment groups
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Table 4 contrasts sharply with the OLS estimate of ATE=-1.60 (p=0.0048): using PSM, the
estimated treatment effect becomes -0.6867 but remains statistically insignificant (p=0.707). To
confirm adequate common support, Figure 8 displays box plots of fifth-grade math scores in the
matched sample. The considerable overlap in score distributions between treated and control
students indicates that matching on the PLS covariates was successful. This reversal in sign—from a
significant negative association in the uncontrolled OLS to a small, positive but imprecise estimate
after matching—underscores how baseline imbalances drove the negative OLS result and highlight
the importance of covariate balance for valid causal inference.

5.2.3. Bayesian additive regression trees

Table 5. Posterior estimation of BART by different data sets

Posterior Mean Posterior Median 95% Credible Interval
Full Data Set -0.2525 -0.2689 [1.7619, 1.6477]
Matched Data Set -1.1484 -1.1346 [-2.5711, 0.5010]

0.5

0.4

Posterior Type

D Full Data Set

D Matched Data Set

0.1

0.0

-2 0 2
Average Treatment Effect (ATE)

Figure 6. Posterior distribution of ATE from BART model

The BART model was applied to both the original full dataset and the PSM dataset to estimate
treatment effects. Cross-validation results suggested that 50 trees provided optimal model
performance. As presented in Table 5, comparative analysis of the estimation outcomes between
these two datasets demonstrates that PSM effectively reduces selection bias in the observational
study. Notably, the posterior distributions reveal consistently negative treatment effects in the
matched-data-based model, whereas the full-dataset-based model yields only marginally negative
estimates. This differential pattern shades light on the importance of accounting for selection bias
through matching procedures.

5.3. Heterogeneity analysis by CATE

Although our ATE estimates were small and imprecise, special education services may nonetheless
benefit certain subpopulations more than others. We therefore use Causal Forest to estimate
Conditional Average Treatment Effects (CATE) as a function of two groups of key moderators: 1.
Early academic ability (kindergarten math IRT score, MIRT) and school sector (public vs. non-
public, S2KPUPRI), 2. Family socioeconomic status.

256



Proceedings of CONF-CDS 2025 Symposium: Data Visualization Methods for Evaluation
DOI: 10.54254/2755-2721/2025.P0O25845

5.3.1. Heterogeneity by educational background

Table 6. CATE of heterogeneity by educational background

Estimate Std. Error t-value p-value
Intercept -1.81933 0.04830 -37.665 <0.001
Kindergarten Math Score 0.03501 0.00113 30.981 <0.001
Public School 0.10859 0.02761 3.933 <0.001
0.0
w
2 Public School
g (1="Yes)
£ 05 -0
= —
i
1.0
25 50 75 100

Kindergarten Math Score (MIRT)

Figure 7. Estimated CATE vs. kindergarten math ability, by school sector

The moderator regression yields highly significant coefficients (both p<0.001). This indicates that
each additional point on the kindergarten math IRT score (MIRT) raises the estimated treatment
effect by about 0.035 points, while attending a public school adds roughly 0.11 points to the CATE.
Figure 10 plots of these fitted CATE curve against MIRT for public versus non-public students. In
both settings, treatment effects start negative at low ability, peak around mid-range scores
(MIRT=50-70), and decline again for the highest-ability learners. Notably, public-school students

suffer fewer negative effects at the lowest ability levels, whereas non-public students maintain
higher effects at the top end.

5.3.2. Heterogeneity by socioeconomic background

Table 7. CATE of heterogeneity by family background

No Yes
If step parent -0.5425 -0.4755
If single parent -0.5857 -0.7938
If received food stamp -0.4937 -0.8487
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Figure 8. Distribution of ITE given the condition of family-background-related factors

The dataset includes family-related socioeconomic indicators that may lead to heterogeneous
treatment effects. Of particular interest are three key variables: single-parent status, stepparent
family structure, and food stamp receipt. These factors are highly correlated with family background
and could well reflect the socioeconomic situation. As shown in Table 6, the causal forest model
estimates distinct CATEs for these family structure indicators. The results demonstrate weak
variations in treatment effects based on family backgrounds. Since the characteristics of Causal
Forest model, distribution of ITE under family backgrounds condition are plotted for CATE
estimation. From the density shape, both scale and location reveal difference within corresponding
subgroups. Confident intervals based on T-test shown in Table 9 further suggest the existence of
heterogeneity. Specifically, children from non-single parent families and families that do not receive
food stamps have a significant advantage in ITE, while children from stepparent families have a
significant difference in ITE. However, the presence of both positive and negative values in the
confidence interval diminishes the advantage of IDE in stepparent subgroup. The analysis of these
three subcategories indicates that under more favorable socioeconomic conditions, the treatment
effect of special education will exhibit stronger effects.

Table 8. 95% Confident interval of ITE differences in socioeconomic subgroups

If step parent [0.240, 0.359]
If single parent [-0.203, 0.005]
If received food stamp [0.251, 0.390]

Our analysis began with an innovative data-preprocessing and dimension-reduction strategy that
combined LASSO variable selection and supervised PLS extraction. We first used LASSO to
winnow the original 34 covariates down to those most predictive of fifth-grade math performance,
then applied PLS to compress these into five orthogonal components, thereby eliminating
multicollinearity and furnishing a compact, high-information basis for our causal models (see
Figures 1-5).

Applying this framework, OLS results suggested a significant negative association (-1.60 points,
p=0.0048), but this was likely confounded by baseline imbalances. After adjusting for selection bias
via Propensity Score Matching (PSM), the effect changed to -0.69, becoming statistically
insignificant (p=0.707), showing the role of covariate balance in causal inference. Bayesian Additive
Regression Trees (BART) on matched data reinforced the weak negative effect, underscoring the
need for nonparametric methods to handle potential nonlinearities. Furthermore, the discrepancy
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between the BART estimates on the full dataset and the OLS results further highlights the
fundamental methodological divergence between frequentist and Bayesian methods.

CATE analysis via Causal Forest reveals heterogeneity in treatment effects based on students’
educational background and socioeconomic structure. Specifically, each additional point in
kindergarten math ability (MIRT) increases the predicted effect of special education by about
0.0035, with the most positive impacts concentrated among students with mid-level readiness
(MIRT = 50-70). Moreover, indicators of socioeconomic background (including single-parent status,
stepparent households, and food stamp receipt) showed significant moderating influence. The
differences in distribution shape of CATE and the results of T-test indicate that better socioeconomic
conditions will have a positive impact on the treatment effect of special education.

6.2. Policy implications

These findings carry important implications for policy and practice. Rather than a one-size-fits-all
model, special education resources should be strategically targeted. Mid-ability students should
remain a core focus, while very low-ability students in non-public settings need enhanced wrap-
around support to prevent declines. High-ability learners require advanced enrichment rather than
standard remediation. Finally, public schools’ success in buffering negative effects for the most
vulnerable suggests their collaborative support models could be adapted by private programs.

6.3. Limitations and future directions

Several limitations may affect our conclusions. We focus exclusively on a single math outcome at
grade five, leaving longer-term and non-cognitive impacts unexplored. Future research should
extend this framework by mapping heterogeneity across disability types, intervention intensities, and
longitudinal trajectories, as well as investigating mediating mechanisms (like improvements in
attention or self-regulation) and testing the generalizability of findings across different school
systems and international contexts.

6.4. Conclusion

In summary, our study demonstrates that average treatment effects can conceal critical variation in
who benefits from special education. By integrating LASSO-PLS preprocessing, Propensity Score
Matching (PSM), Bayesian Additive Regression Trees (BART), and machine-learning-based causal
forests, we uncover that academic readiness, school sector and family background, drive
heterogeneity in outcomes. This precision-targeting framework can help educators and policymakers
allocate precision special education resources more effectively, narrowing achievement gaps and
promoting educational equity.
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