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Abstract. Deep neural networks (DNNs) are playing an important role in various areas
including computer vision (CV) and natural language processing. This paper
comprehensively analyzes model optimization techniques for deploying deep neural
networks on resource-constrained embedded systems. We evaluate three core paradigms—
pruning, quantization, and dynamic inference—focusing on their efficacy in balancing
computational efficiency, memory footprint, and accuracy retention. For each technique, we
conduct dedicated experiments spanning representative architectures including ResNet,
VGG, Inception, and MobileNet variants to evaluate accuracy-FLOPS trade-offs. We also
discuss and compare the practical deployment metrics for optimization techniques. Finally,
we emphasize promising future directions.
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1. Introduction

The rapid proliferation of deep learning (DL) has revolutionized artificial intelligence, enabling
breakthroughs in computer vision [1], natural language processing, and autonomous systems.
Convolutional Neural Networks (CNNs), such as AlexNet and VGG, pioneered large-scale image
recognition but demanded substantial computational resources, limiting their deployment in
resource-constrained environments. Subsequent architectures like ResNet [1] introduced residual
learning to mitigate vanishing gradients in deeper networks, while DenseNet [2] enhanced feature
reuse through dense connectivity. These "big" models achieved state-of-the-art accuracy but
incurred high parameter counts and computational costs (e.g., DenseNet161: 28.68M parameters,
7.79G operations [2]), rendering them impractical for embedded platforms.

In response, lightweight "little" models like MobileNetV2 [3] and ShuffleNet V2 [4] emerged,
optimizing for efficiency through inverted residuals, channel shuffling, and aggressive parameter
reduction. For instance, ShuffleNet V2 x0.5 utilizes only 1.37M parameters and 42.52M operations
[4]. However, Table 1 reveals a critical trade-off: while these models reduce compute intensity, they
exhibit severe accuracy degradation under lower-precision arithmetic—essential for embedded
hardware acceleration. ShuffleNet variants suffer catastrophic drops (>65%) in fp16/int8 precision
(e.g., ShuffleNet V2 x1.5: 80.91% fp32 vs. 10.03% fp16 [4]), contrasting sharply with robust
models like ResNet50 (merely 0.24% int8 loss [2]).
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Embedded AI deployments—drones, mobile robots, and smartphones—face stringent constraints:
limited memory, energy budgets, and real-time latency requirements. High-parameter models (e.g.,
ResNet152: 60.19M parameters [2]) exhaust memory bandwidth, while intensive computations (e.g.,
Dense-Net201: 4.34G ops [1]) drain batteries and violate latency thresholds. Lower-precision
inference (fp16/int8) alleviates these issues but amplifies accuracy volatility, as Table 1 quantifies.
Such instability jeopardizes safety-critical applications; a drone’s navigation system failing due to
quantization errors could have dire consequences.

Table 1. Accuray and computation intensity analysis in terms of “big” and “little” DNNs. Int8
activations are calibrated using the test dataset with entropy based method. The accuracy variation is

recorded in the parethesis for fp16 and int8, and marked bold if the degradation is larger than 1%

Model
Param/Com

p

Densenet
121 [1]

(7.98M/2.87
G)

Densenet
161 [1]

(28.68M/7.79
G)

Densenet
169 [1]

(14.15M/3.
40G)

Densenet
201 [1]

(20.01M/4.34
G)

Resnet50 [2]
(25.56M/4.11

G)

Resnet101 [2]
(44.55M/7.83

G)

Resnet152 [2]
(60.19M/11.56

G)

Acc.fp32 89.63 90.4 89.84 90.04 89.06 88.68 89.25

Acc.fp16 89.60
(0)

90.38
(-0.02)

89.85
(+0.01) 90.05 (+0.01) 89.04

(-0.02)
88.67
(-0.01)

89.25
(0)

Acc.int8 88.86
(-0.77)

89.92
(-0.48)

88.52
(-1.32)

87.39
(-2.65)

88.82
(-0.24)

88.57
(-0.11)

88.23
(-1.02)

Model
Param/Com

p

resnext50_3
2x4d [5]

(25.03M/4.2
6G)

resnext101_3
2x8d [5]

(88.79M/16.4
8G)

mobilenet_
v2 [3]

(3.51M/31
4.13M)

shufflenet_v2_
x0_5 [4]

(1.37M/42.52
M)

shufflenet_v2_
x1_0 [4]

(2.28M/148.8
1M)

shufflenet_v2_
x1_5 [4]

(3.50M/301.2
9M)

shufflenet_v2_
x2_0 [4]

(7.39M/590.7
4M)

Acc.fp32 89.09 89.76 84.16 75.14 79.41 80.91 81.15

Acc.fp16 89.08
(-0.01)

89.76
(0)

84.14
(-0.02)

8.99
(-66.15)

8.99
(-70.42)

10.03
(-70.88)

9.86
(-71.29)

Acc.int8 89.07
(-0.02)

89.75
(-0.01)

82.67
(-1.49)

9.47
(-65.67)

9.26
(-70.15)

10.00
(-70.91)

9.93
(-71.22)

To bridge this gap, three key optimization paradigms have evolved:
• Pruning
Pruning is a fundamental model compression technique that eliminates redundant parameters or

structural components from neural networks, significantly reducing computational complexity and
memory footprint [6]. The objective of Model Pruning is to remove nodes and connections that
contribute very little to the model’s output.The pruned model can be significantly smaller than the
full model, making it faster and much cheaper for inference,while using less energy.

• Quantization
Quantization reduces the bit-width of weights and activations in deep neural networks (DNNs),

enabling efficient deployment on resource-constrained edge de-vices. It maps full-precision (FP32)
values to low-bit integers (e.g., INT8), significantly compressing model size and accelerating
inference.

• Dynamic inference
Different from conventional deep learning models with fixed computational graphs and

parameters during inference, dynamic networks can adjust their structures and parameters in
response to varying inputs, resulting in significant advantages regarding accuracy, computational
efficiency, adaptability and more [7].
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This work analyzes these techniques, evaluating their efficacy in mitigating the embedded
deployment challenges highlighted by Table 1. We dissect algorithmic principles, trade-offs, and
real-world applicability, setting the stage for a comprehensive discussion on optimizing DL for the
embedded frontier.

2. Model optimization techniques

2.1. Pruning

Pruning is a critical model optimization technique aimed at enhancing the efficiency of neural
networks while minimizing any degradation in quality. The primary objective is to maximize
efficiency quantified through metrics such as FLOPs and compression ratio with the least possible
reduction in accuracy [8]. As shown in Figure 1, which plots the accuracy of a pruned network
against compression ratio, a compression ratio of 2 results in only a marginal accuracy drop. Beyond
this point, higher compression ratios incur severe accuracy penalties. This demonstrates that pruning
can achieve substantial efficiency improvements, such as reduced computational cost and model
size, with negligible impact on performance, aligning well with the goal of embedded AI systems
where resource constraints are paramount.

Figure 1. Accuracy of pruned network

Pruning techniques can be broadly classified into hardware-amenable and hardware-oblivious
approaches, based on their compatibility with existing hardware platforms. Hardware-amenable
pruning refers to methods that can be directly executed on general-purpose hardware like GPUs,
whereas hardware-oblivious pruning necessitates specialized accelerators due to irregular memory
access patterns. The distinction largely depends on the granularity and manner of parameter
removal, as depicted in Figure 2 [9]. For hardware-oblivious solutions, such as fine-grained pruning,
key advantages include a highly controllable compression rate, ease of implementation based on
parameter ranking, and the potential to achieve extremely compact models. However, these methods
suffer from significant drawbacks: they require specialized hardware and software libraries for
deployment, exhibit unpredictable accuracy drops, and often involve tedious, aimless fine-tuning
processes to recover performance, making them less practical for standard embedded environments
without custom infrastructure [10-13].
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Figure 2. Pruning methods of different granularities

The application of pruning varies significantly across hardware architectures, with structured
pruning formally denoting hardware-amenable approaches and unstructured pruning representing
hardware-oblivious ones. Structured pruning, which removes entire neurons or filters in a regular
pattern, is optimized for deployment on GPUs, leveraging their parallel processing capabilities [14-
17]. In contrast, unstructured pruning, characterized by irregular weight removal, is suited for
specialized hardware like ASICs and FPGAs, as visualized in Figure 3. This figure highlights how
structured pruning focuses on pruned neurons for GPU execution, while unstructured pruning targets
pruned synapses for implementation on accelerators, ensuring that embedded AI systems can
achieve tailored efficiency gains based on the target hardware platform.

Figure 3. Pruning in hardware architecture

2.2. Quantization

Quantization, a fundamental model optimization technique, reduces the precision of neural network
parameters and activations from floating-point representations (e.g., 32-bit) to lower-bit integers
(e.g., 8-bit or 4-bit). This approach significantly accelerates on-device inference for embedded AI
systems by minimizing computational latency, reducing energy consumption, and decreasing storage
requirements—crucial for resource-constrained devices like mobiles and IoT sensors. It also enables
efficient deployment on specialized hardware and GPUs by simplifying arithmetic operations. While
the core goal is maintaining high accuracy alongside substantial efficiency gains in inference time,
power usage, and model size, quantization methods vary: data-free quantization transforms
weights/activations using only model-derived statistics (e.g., min-max ranges), offering simplicity
but potential accuracy loss; calibration-based methods use small datasets to adjust quantization
parameters (e.g., via entropy minimization), improving accuracy at the cost of dataset dependence;
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and finetune-based quantization incorporates error simulation during training (e.g., using straight-
through estimators), allowing weight adjustments for robustness but increasing training complexity
[18-22].

Figure 4. Llustration of PTQ and QAT

Quantization is further categorized by application stage: post-training quantization (PTQ) and
quantization-aware training (QAT), with distinct workflows shown in Figure 4 (a) and Figure 4 (b)
respectively. PTQ is applied after full-precision training, converting weights and activations directly
to low precision; it typically uses a small calibration dataset to determine quantization parameters
(e.g., via min-max or entropy methods) before final quantization [23-26]. This approach is
computationally efficient, avoiding retraining overhead, but may incur accuracy loss due to
unmodeled quantization effects during initial training. In contrast, QAT integrates quantization
simulation during fine-tuning or retraining: starting from a pretrained model and using training data,
it inserts fake quantization operators during the forward pass to mimic precision loss while
computing gradients in full precision to iteratively adjust weights via backpropagation [27]. This co-
optimization significantly enhances robustness to quantization, yielding higher accuracy than PTQ
at the cost of substantial training resources and time [28,29]. Consequently, PTQ suits scenarios
prioritizing rapid deployment with acceptable accuracy trade-offs, while QAT is preferred for
applications demanding maximal precision in re-source-constrained systems.

2.3. Dynamic inference

Dynamic inference, also referred to as dynamic networks, is a model optimization technique that
selectively skips redundant computations during inference based on the characteristics of input data,
thereby enabling adaptive and efficient processing. This approach, often termed "dynamic
inference," reduces computational overhead, latency, and energy consumption which critical for
embedded AI systems with limited resources by avoiding unnecessary operations for simpler inputs
while maintaining accuracy for complex ones. Dynamic inference represents a paradigm shift from
static computational graphs by enabling neural networks to adapt their inference pathways in real-
time based on input characteristics. This approach optimizes computational efficiency while
maintaining accuracy through three primary mechanisms: sample-wise, spatial-wise, and temporal-
wise adaptation.

2.3.1. Sample-wise dynamic inference

Sample-wise methods allocate computation per input sample, Dynamically adjusting network depth
or width. The most common dynamic architecture is the early-exit network (Fig. 5), which has
multiple intermediate classifiers attached to various internal layers [30-32]. The forward propagation
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can be halted when adequate confidence is achieved or when specific criteria are met at an internal
classifier.

Figure 5. Early-exit

2.3.2. Spatial-wise dynamic inference

Spatial adaptation focuses on pixel or region-level efficiency. In convolutional layers, dynamic
inference can be applied spatially by skipping computations on background pixels that contribute
minimally to the output [33-35].For instance, Figure 6(a) demonstrates this spatial skipping, where
non-salient regions are bypassed during convolution, focusing computation only on relevant areas to
accelerate processing. Methods like Dynamic Convolutions [36-38] skip computations on less
informative pixels using predicted spatial masks. For example, entropy-based masking achieves
2.5× speedup in semantic segmentation by processing only 40% of pixels [39].

Similarly, in the channel dimension, as shown in Figure 6(b), dynamic inference skips entire
channels with low impact on the final result, such as those with negligible activation magnitudes, to
reduce the number of operations per layer [40].

Figure 6. Skip background and channels
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These approaches can be combined for enhanced efficiency. Figure 7 depicts a unified method
named Dynamic Dual Gating [41], a dynamic computing method, to reduce the model complexity at
run-time. For each convolutional block, dual gating identifies the informative features along two
separate dimensions, spatial and channel. Specifically, the spatial gating module estimates which
areas are essential, and the channel gating module predicts the salient channels that contribute more
to the results. Then the computation of both unimportant regions and irrelevant channels can be
skipped dynamically during inference.

Figure 7. Ilustration of dual gating

2.3.3. Temporal-wise dynamic inference

Temporal-wise dynamic neural networks can unevenly allocate computation along the temporal
dimension for sequential data, such as videos or time series data [42]. In the case of streaming data,
such as videos, there is typically high correlation among nearby frames. Consequently, the dynamic
focus on specific key frames is a crucial characteristic for deep learning models to reduce redundant
computation [43].Furthermore, temporal-wise and spatial-wise adaptive computation could be
implemented simultaneously to achieve higher efficiency [44].

3. Discussion

3.1. Experimental configuration

All experiments were rigorously designed to evaluate optimization techniques under resource-
constrained conditions. The CIFAR-10 dataset, comprising 60,000 32×32 RGB images across 10
classes, served as the primary testbed for quantization and pruning analyses. For dynamic inference
validation, we utilized the ImageNet-1k benchmark with 1.28 million training images spanning
1,000 object categories. Hardware execution was conducted on an NVIDIA TU102 GPU (24GB
GDDR6 VRAM, 4,608 CUDA cores), leveraging TensorRT 8.6 for accelerated FP16/INT8
operations and cuDNN 8.9 for optimized kernel execution.

Prior to training, standardized preprocessing pipelines were implemented. For CIFAR-10, input
images underwent normalization with per-channel mean and standard deviation, supplemented by
random horizontal flipping and 32×32 center cropping. ImageNet samples were resized to 256×256
resolution followed by 224×224 center cropping. Quantization deployments employed TensorRT’s
post-training quantization workflow, where activation ranges were calibrated using 1,000 randomly
selected test images through entropy minimization. Pruning experiments adopted gradual
magnitude-based scheduling during fine-tuning, initializing from pre-trained FP32 checkpoints and
applying sparsity ramping from 0% to 60% over 10 epochs.
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3.2. Comparative analysis of individual optimization techniques

Our experimental evaluation systematically examines three core model optimization paradigms—
quantization, pruning, and dynamic inference—across diverse neural architectures and datasets. The
results demonstrate significant efficiency gains while highlighting nuanced trade-offs between
computational performance and accuracy retention.

3.2.1. Quantization efficacy

As quantified in Table 2, INT8 precision delivers substantial inference acceleration across all models
and batch sizes. For in-stance, ResNet50 achieves a 3.85× speedup at batch size 128, while
MobileNet v1 attains a 6.21× improvement. This acceleration stems from reduced memory
bandwidth requirements and streamlined integer operations, particularly beneficial for embedded
hardware. Crucially, Table 3 reveals minimal accuracy degradation for most architectures: ResNet
and VGG variants exhibit drops of <0.3%, and Inception v4 maintains near-identical accuracy.
However, MobileNet v1 experiences a pronounced 1.55% decline, underscoring its sensitivity to
precision reduction due to architectural constraints. Collectively, INT8 quantization balances high
throughput with negligible accuracy loss for robust models but necessitates careful calibration for
lightweight networks.

Table 2. Model training speed

Image/s
Batch size 1 Batch size 8 Batch size 128

FP32 FP16 Int 8 FP32 FP16 Int 8 FP32 FP16 Int 8

MobileNet v1 1509 2889 3762 2455 7430 13493 2718 8247 16885
MobileNet v2 1082 1618 2060 2267 5307 9016 2761 6431 12652

ResNet50 (v1.5) 298 617 1051 500 2045 3625 580 2475 4609
VGG-16 153 403 415 197 816 1269 236 915 1889
VGG-19 124 358 384 158 673 1101 187 749 1552

Inception v3 156 371 616 350 1318 2228 385 1507 2560
Inception v4 76 226 335 173 768 1219 186 853 1339
ResNet101 84 208 297 200 716 1253 233 899 1724
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Table 3. Accuracy comparison of 8-bit quantized inference results

Model FP32
Acc.(%)

Int 8
Acc.(%)

Acc.
Drop(%)

MobileNet v1 71.01 69.46 1.55
MobileNet v2 74.08 73.85 0.23

NASNet (large) 82.72 82.66 0.06
NASNet (mobile) 73.97 73.4 0.57
ResNet50 (v1.5) 76.51 76.28 0.23
ResNet50 (v2) 76.37 76.22 0.15

ResNet152 (v1.5) 78.22 77.95 0.27
ResNet152 (v2) 78.45 78.15 0.30

VGG-16 70.89 70.82 0.07
VGG-19 71.01 70.85 0.16

Inception v3 77.99 77.85 0.14
Inception v4 80.19 80.16 0.03

3.2.2. Pruning advantages

Structured pruning via QAT yields compelling efficiency gains, as evidenced in Table 4. VGG-19
reduces FLOPs by 56% with only a 0.04% accuracy drop, while ResNet-50 achieves 54% FLOPs
reduction at a 0.52% accuracy cost. This efficiency arises from eliminating redundant filters without
disrupting critical feature pathways. Notably, MobileNet v2 shows limited FLOPs reduction despite
aggressive pruning, indicating diminishing returns in highly optimized architectures. Pruning’s
primary strength lies in its hardware compatibility: structured sparsity aligns with parallel
processing units, enabling deployment without specialized accelerators.

Table 4. Comparison of different model pruning methods

Model
Baseline Pruned

Acc.(%) Acc.(%) Acc.Drop(%) FLOPs Reduction

VGG-16 73.63 73.54 0.09 41%
VGG-19 73.60 73.56 0.04 56%

ResNet-34 73.31 72.57 0.74 49%
ResNet-50 76.15 75.63 0.52 54%

MobileNet v2 72.0 71.80 0.20 28%

3.2.3. Dynamic inference flexibility

Table 5 highlights the adaptability of dynamic methods. DGNet excels for ResNet-50, reducing
FLOPs by 57.2% while slightly improving accuracy. In contrast, FPGM and DynConv incur >1.3%
accuracy penalties for similar FLOPs reductions. For MobileNet-v2, DGNet achieves 44% FLOPs
savings with minimal degradation, outperforming MetaPruning. This variability underscores that
dynamic inference’s efficacy hinges on sophisticated gating mechanisms—spatial-channel dual
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gating optimally skips redundant computations, whereas simpler policies struggle with accuracy
preservation.

Table 5. Comparison of accelerated ResNet and MobileNet-V2 on ImageNet

Model Method
Top 1 accuracy(%)

FLOPs
Baseline Accelerated Acc↓

ResNet-18

FPGM [45] 70.28 68.41 1.87 1.05E9(41.8%↓)
LCCL [34] 69.98 66.33 3.65 1.23E9(34.6%↓)
CGNet [46] 69.20 68.80 0.40 0.98E9(48.2%↓)

DynConv [37] 69.76 66.97 2.79 1.08E9(41.5%↓)
DGNet [41] 69.76 70.12 -0.36 9.54E8(49.4%↓)

ResNet-34

FPGM [45] 73.92 72.63 1.29 2.17E9(41.1%↓)
LCCL [34] 73.42 72.99 0.43 2.78E9(24.8%↓)
CGNet [46] 72.40 71.30 1.10 1.83E9(50.5%↓)

DynConv [37] 73.31 71.75 1.56 2.01E9(44.1%↓)
DGNet [41] 73.31 73.01 0.30 1.50E9(59.3%↓)

ResNet-50

FPGM [45] 76.15 74.83 1.32 1.91E9(53.5%↓)
Hrank [40] 76.15 74.98 1.17 2.30E9(41.3%↓)

ConvNet-AIG [32] 76.13 75.25 0.88 2.56E9(32.6%↓)
DynConv [37] 76.13 74.40 1.73 2.25E9(42.4%↓)

DGNet [41] 76.13 76.41 -0.28 1.65E9(57.2%↓)

MobileNet-v2
MetaPruning [47] 71.88 71.20 0.68 2.17E8(22.5%↓)

DGC [48] 72.00 70.70 1.30 2.45E8(18.3%↓)
DGNet [41] 71.88 71.62 0.26 1.60E8(44.0%↓)

3.3. Cross-technique trade-offs and deployment implications

The interplay between optimization techniques reveals critical design considerations for embedded
systems, synthesized in Table 6.

Quantization dominates in memory reduction and hardware acceleration potential but risks
instability in lightweight models. Pruning offers moderate memory savings yet excels in FLOPs
reduction with better generalization but demands iterative retraining.

For latency-critical edge devices, INT8 quantization is preferable; for energy-constrained systems
where FLOPs directly correlate with power draw, pruning is superior.

Dynamic Inference as a hybrid solution, uniquely adapts computational cost per input, achieving
30–60% FLOPs reduction with near-zero accuracy loss. However, its runtime overhead and
dependency on programmable logic limit deployment on fixed-function hardware. It is ideal for
heterogeneous inputs but less suited for uniform data streams.

Consequently, no single optimization technique universally dominates, as each addresses distinct
aspects of efficiency: quantization maximizes hardware utilization by leveraging low-precision
arithmetic, pruning enhances computational efficiency through targeted sparsity, and dynamic
inference optimizes re-source allocation by adapting to real-time demands. Therefore, for holistic
embedded deployment, we recommend a context-dependent strategy: prioritizing quantization-first
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for platforms with dedicated hardware integer acceleration support to exploit its latency and energy
benefits; employing structured pruning for GPU-accelerated platforms where its predictable sparsity
patterns align well with parallel architectures; and adopting dynamic inference in scenarios
characterized by significant workload variability to dynamically conserve resources during periods
of lower demand, thereby optimizing the overall system efficiency.

Table 6. Comparison of compression techniques

Tech
niqu

e

Primary
Goal Advantages Disadvantages Memory

Reduction

Compu
tation
Cost

Reduct
ion

Accura
cy

Degrad
ation

Hardware
Adaptabil

ity

Edge
Suita
bility

Dyn
amic
Infer
ence

Adapt
computationa

l pathways
based on

input
characteristic

s

Preserves accuracy via
input-adaptive

processing; Reduces
redundant computation;

Enables real-time
resource allocation

Runtime policy
overhead;

Vulnerability to
adversarial samples;

Complex training
requirements

Low

Moder
ate to
High
(30-
60%)

Very
Low to

Low
(Δ<0.5

%)

Moderate
(requires
program
mable
logic)

Mod
erate

to
High

Qua
ntiza
tion

Reduce
numerical
precision

High hardware
acceleration; Significant

memory/computation
savings; Native support

on edge accelerators

Catastrophic failure in
lightweight models;

Calibration
complexity; Precision-

dependent accuracy
instability

High to
Very High

(2-8×)

Moder
ate to
Very
High

Very
Low

(QAT)
to High
(PTQ)

Very
High

Very
High

Prun
ing

Eliminate
redundant
parameters

Improved generalization;
Compatible with

structured hardware;
Reduced energy

consumption

Unstructured sparsity
underutilizes

hardware; Iterative
retraining overhead;

Architecture-
dependent efficacy

Moderate
(structured)

to Very
High

(unstructur
ed)

Low to
Very
High

Very
Low to
Mediu

m

Low
(unstruct
ured) to

High
(structure

d)

Mod
erate

to
High

4. Conclusion

This study comprehensively evaluates three pivotal model optimization paradigms—quantization,
pruning, and dynamic inference—for deploying deep neural networks on resource-constrained
embedded systems. Through rigorous experimentation across diverse architectures and datasets, we
validate that each technique uniquely addresses the trilemma of computational efficiency, memory
footprint, and accuracy retention. Quantization emerges as the foremost solution for memory
compression and hardware acceleration. However, its vulnerability in lightweight architectures
necessitates careful calibration, underscoring the critical role of model robustness in low-precision
deployment.

Pruning, particularly structured variants via QAT, demonstrates exceptional efficacy in
computational reduction. Its hard-ware compatibility with GPUs positions it as an ideal candidate
for energy-constrained systems where FLOPs directly correlate with power consumption.
Conversely, dynamic inference techniques like DGNet offer adaptive efficiency, dynamically
reducing computation by 30–60% for variable-input scenarios while occasionally enhancing
accuracy, albeit at the cost of runtime overhead and dependency on programmable logic.



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25967

280

Crucially, no single technique universally dominates; instead, their synergistic integration—such
as quantized sparse models or hardware-aware dynamic policies—represents the most promising
path toward ultra-efficient embedded AI. Future work must prioritize co-designing optimization
techniques with lightweight model architectures to mitigate precision sensitivity. Cross-technique
interoperability is under-explored. While quantization and pruning individually excel in memory and
computation re-duction, their combined application often triggers cascading errors. Emerging
frameworks must establish unified optimization methods.
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