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Abstract. A neurodevelopmental disorder named autism spectrum disorder (ASD) is challeng-

ing to diagnose. The prevailing diagnostic manner is based merely on the behavioral measure-

ment with a high tendency of misdiagnosis. People require an advanced method to make more 

quantitative diagnosis. In this paper, two deep learning architectures were explored with the ma-

chine learning methods. The Mixup method was used to augment the original functional Mag-

netic Resonance Imaging data. Features of the data extracted by two different kinds of autoen-

coders which are Sparse Autoencoder and Variational Autoencoder were used as inputs of two 

deep neural networks functioning as classifiers respectively. The models can classify patients 

with ASD from typical control subjects with the accuracy of 75.5% and 75.2% respectively, 

which outperformed the other state-of-the-art method by 4.7% and 4.4%. The further signifi-

cance of this project is to help develop our perception of the neurobiological foundation of the 

ASD.  

Keywords: brain disorder, autism spectrum disorder, machine learning, deep neural network, 

autoencoder  

1.  Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder difficult to diagnose. The current 

psychiatric diagnostic process is based simply on observing the behavioral symptoms [1] neither with 

enough knowledge of the neurological mechanisms behind autism spectrum disorder, nor suitable for 

quantitative diagnosis and may lead to false diagnosis [2]. 

In recent decades, advances in neuroimaging technologies have made it easy to measure those patho-

logical changes related to the brain with autism spectrum disorder. The fMRI data has the features that 

tell the difference between ASD brain and healthy controls. Resting state fMRI reflects the functional 

relationship between areas of the brain. The fluctuations in blood oxygenation or flow indicate the cor-

relation of low-frequent undulation on resting state fMRI. It illustrates functional connectivity of the 
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brain [3]. An average correlation of the time series between the regions of interest is calculated in order 

to investigate the link between different areas of the brain. The correlation is used to form a connectivity 

matrix. Nevertheless, the differences between the brain with ASD and the healthy controls are too subtle 

to help detect biomarkers applying traditional computational or statistical methods. Progressive ma-

chine-learning solutions provide a systematic method to develop self-acting solutions for classifying 

objective and study the delicate patterns demonstrated by the data that may be particular to the brains 

with ASD [4]. In the case of mental disease states, researchers have identified patients with brain acti-

vation associated with schizophrenia [5], with autism [6], and with depression [7].  

FIGURE 1 demonstrates the areas of Gray Matter and White Matter using the T1-weighted MRI 

brain-imaging scan to map the structural changes of brain development. The White Matter functions as 

the creation of new connections for the highly dynamic growth process. The Gray Matter, containing 

numerous cell bodies and few myelinated axons, is distinguished from the White Matter. The job of the 

Gray Matter is to eliminate or prune the unused brain cells. Below this 11-year-old boy’s brain imaging 

with autism clearly shows that there is a delay in the growth rate of the White Matter, which is also 

responsible for the connecting brain regions for social and language abilities. At the same time, the 

unused cell from the Gray Matter is not sufficiently pruned away, leaving trouble in the putamen for 

learning and the anterior cingulate for regulating emotions and cognitions.   

 

Figure 1. Control and autism subject comparison (UCLA Laboratory of Neuro Imaging). 

Studies have identified individuals as autistic or healthy from their resting state fMRI brain activation 

with almost 97% accuracy single sites applying machine-learning algorithms to ASD brain imaging 

data. They also discovered a psychological driven brain activation pattern. The pattern was found in 

control participants and nearly undiscovered in autistic patients [6]. A proviso of studies applying su-

pervised machine learning to brain imaging is their relatively small data size. Classification accuracy 

plummets in larger databases and if the source of the data is different [8]. A majority of studies have 

utilized supervised learning methods to integrate brain imaging with machine learning. When selecting 

the features during the process of supervised learning, much subjectivity is added to the experiment, 

which may be a hindrance to the comparison of the results from different studies. The choice of the 

labels and of the features of the training set are decided by not only a priori hypothesis but also explor-

atory trials; therefore, they are based on subjectivity to certain extent [9]. If we extract features more 

objectively, we might have a refreshed insight into the function of brain that depends less on experi-

menters and rests more with data. According to the previous studies, deep learning is promising for brain 

imaging applications in the clinical field [10]. 

To achieve more quantitative diagnosis in this field, an advanced and scalable deep-learning archi-

tecture, which helps discover reliable biomarkers of mental health disorders is needed. This project ex-

plored a deep-learning architecture that integrated supervised machine-learning methods with unsuper-

vised ones for differentiating autistic patients from health controls with the resting state fMRI data. The 

second goal of this project was to research the neural patterns regarding autism spectrum disorder that 

is most substantial to the classification and thus help improve our perception of the neurobiological 

biomarkers of the autistic brain. Furthermore, these methods proposed in the project can help to detect 

ASD more accurately and earlier. 
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The structure of the paper is: In section 2, we discussed some previous relevant studies and several 

relevant state-of-the-art tools. In section 3, we proposed all the feature extraction methods, data-aug-

mentation methods, and deep learning methods we have tried. In section 4, we compare the performance 

of our new methods with the methods proposed in the previous related papers. In section 5, we conclude 

our experiments and discuss the future work. 

2.  Related work  

Previous studies have demonstrated some models to classify Autism in their research. Heinsfeld et al. 

[9] proposed a model obtaining 70% accuracy for classifying 1,035 subjects but obtaining only 52% 

accuracy for classifying each of the 17 sites contained in the ABIDE dataset. Eslami et al. [4] suggested 

an architecture model called ‘ASD-DiagNet’ based on that proposed by Heindfeld et al. [9]. In ASD-

DiagNet, the auto-encoder and the single layer perceptron are trained in a joint method for performing 

feature selection and the later classification. Almuqhim et al. [11] proposed a model called ‘ASD-

SAENet’ based on ‘ASD-DiagNet’. ASD-SAENet is comprised of a sparse auto-encoder and a deep 

neural network. The highest accuracy of the models mentioned above is around 70%. Generally, the 

inspiration of our model came from the study of ‘ASD-SAENet’ [11].  

Many other methods were tried aside from those proposed in the previous papers. Basically, an at-

tempt at modifying the ‘ASD-DiagNet’ was made to advance the classifying operation. In the process 

of data augmentation, the ‘ASD-DiagNet’ used a basic linear interpolation method called Synthetic Mi-

nority Over-sampling Technique (SMOTE). This data augmentation method doubled the size of the 

training set. What was modified here is to replace SMOTE with the Mixup method -- A linear augmen-

tation method proposed by MIT. In the process of feature selection, an autoencoder was used to extract 

a lower dimensional feature representation. A Sparse Autoencoder or a Variational Autoencoder was 

chosen instead of a general Autoencoder to alleviate the influence of overfitting in the results. The Var-

iational Autoencoder could help with introducing reconstructed input to the dataset. Concerning the 

classification assignment, the ‘ASD-DiagNet’ implemented a single-layer perceptron (SLP) that used 

the autoencoder's bottleneck layer as input. Instead, we replace the single layer perceptron with a deep 

neural network as the classifier.  

3.  Material & method 

3.1.  Dataset 

As MRI imaging is commonly used for brain disorders, the fMRI is the method to evaluate cognitive 

activity by monitoring the blood flow to specific sections of the brain. Where the blood flow increases, 

the neurons will be active. In fMRI data, different brain volumes are represented by a series of little 

cubic elements named voxels. Every voxel’s activity is tracked over time to extract the time series as an 

eigenvector. In this study, brain disorder is analyzed using a fMRI technology called rs-fMRI (resting 

state fMRI), which is widely applied in brain diseases evaluation. Those rs-fMRI data are preprocessed 

by a pipeline provided by ABIDE initiative and used for training and testing, this dataset consists of 

1035 samples including 505 subjects with Autistic patients and 530 normal individuals. 

The dataset applied in our study is preprocessed by a pipeline called C-PAC (Configurable Pipeline 

for the Analysis of Connectomes) which parcellated the brain into 200 functionally homogeneous re-

gions using spatially constrained spectral clustering algorithm (CC-200) [12]. Generally speaking, most 

research on ASD diagnosis using machine learning technology only consider a subset of the dataset. Or 

the research may include other demographic information other than fMRI data in the model. However, 

a linear augmentation method was applied in this study to expand the dataset using the available original 

sets which consists of samples collected from 17 different sites. During the evaluation phase, we firstly 

trained and tested the model with whole 1,035 samples. Then, the model was evaluated using the sam-

ples from each site separately [4]. Furthermore, in order to prove the robustness of the model and its 

ability to adapt to different data sets, we also collected time series extracted from five sets of ROIs 

(Region of interest) based on five varied atlases preprocessed by other pipelines to evaluate the 
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performance of the model.  

3.2.  Feature extraction   

The connectivity among different brain regions is often used in fMRI assessment and is proved to be an 

important feature of fMRI pattern recognition. In our study, correlation was taken as an index to measure 

the connectivity of different brain regions.  

Pearson’s correlation is widely applied for measuring the functional connectivity in fMRI data among 

all correlation methods [13-15]. It represents the linear relationship among time series of different re-

gions. The other correlation measure is the Spearman correlation coefficient. It assesses the monotonic 

relationship between two variables which can better reflect the dependence of different regions of the 

brain. So, we use Spearman correlation to approximate the functional connectivity in fMRI data. Given 

the two series, 𝑅 and 𝑆, each of length 𝑇, the Spearman’s correlation could be generated using the equa-

tion below: 

𝜌𝑠 =
∑ (𝑅𝑖 − �̅�)(𝑆𝑖 − 𝑆̅)
𝑁
𝑖=1

[∑ (𝑅𝑖 − �̅�)
2𝑁

𝑖=1 ∑ (𝑆𝑖 − 𝑆̅)
2𝑁

𝑖=1 ]
1
2

= 1 −
6∑𝑑𝑖

2

𝑁(𝑁2 − 1)
 

where �̅�, and 𝑆̅ are the means of the series 𝑅𝑖 and 𝑆𝑖 respectively, 𝑑𝑖 = 𝑅𝑖 − 𝑆𝑖 . FIGURE 2 illustrates 

the process of the feature extraction. We calculate all pairwise correlations to generate a matrix 𝐶𝑛×𝑛. 

As for the atlas we use is CC200 which divides the brain into 200 regions (n=200), and it finally gener-

ates a 200 × 200 matrix. Since the matrix we calculated is diagonal symmetric, we decide to use the 

matrix’s upper triangle only and transform it into a one-dimensional vector as the features of Autoen-

coder. All those pairs finally result in the vectors with  
𝑛(𝑛−1)

2
= 19,900 values. In order to lower the 

dimension of the eigenvector, we applied the same method as Eslami et al. [16], and only selected the 
1

4
 

maximum and 
1

4
 minimum of the average correlation array as mask to obtain the eigenvector with 9950 

values as the input of each subject. 

 

Figure 2. Workflow of feature extraction. 
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3.3.  Model architecture 

The diagram FIGURE 3 illustrates the overall model architecture that the paper has mainly focused on. 

From step A. Data Augmentation to step B using autoencoder with Deep Neural Network including B.1 

Sparse Autoencoder with Deep Neural Network and B.2 Variational Autoencoder with Deep Neural 

Network. Later moving on to step C. Cross Validation through K-folding. More detailed construction 

of each step is discussed in the following sections.  

 

Figure 3. Model architecture. 

3.4.  Data augmentation 

To reduce the impact of insufficient training set on the generalization ability of the model, this work 

uses a linear data augmentation method called ‘Mixup’ to expand our dataset. 

Mixup is a linear augmentation method based on the principle of Vicinal Risk Minimization (VRM), 

which uses linear interpolation to generate new sample data. In VRM, human knowledge is needed to 

describe the neighborhood or vicinity around each sample in the training set. Then, additional virtual 

samples can be extracted from the vicinity distribution of training samples to expand the support of 

training distribution. For example, when performing classification of the image data, the vicinity of an 

image is usually defined as a set of its horizontal reflection, mild rotation, and slight scaling. Data aug-

mentation is therefore considerably resulting in the improvement of generalization. 

The research in Zhang et al. [17] proposed a Mixup distribution: 

𝜇(�̃�, �̃�|𝑥𝑖, 𝑦𝑖) =
1

𝑛
∑𝐸[𝛿(�̃� = 𝜆 ∙ 𝑥𝑖 + (1 − 𝜆) ∙ 𝑥𝑗, �̃� = 𝜆 ∙ 𝑦𝑖 + (1 − 𝜆) ∙ 𝑦𝑗)]

𝑛

𝑗

 

where 𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼) , for 𝛼 ∈ (0,∞). To be concrete, the virtual feature-target vector is generated by 

sampling from the mixed vicinal distribution: 
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𝑥𝑛 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 

𝑦𝑛 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 

Where (𝑥𝑛, 𝑦𝑛) is the new virtual data generated by linear interpolation, (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) are the 

two samples randomly selected in the training set.  𝑥𝑛 is the random generation of new data samples, 

and 𝑦𝑛 is the label of 𝑥𝑛. It should be noted that the range of 𝑦𝑛 generated by mixup is [0,1], but the 

labels of our samples are ‘0’ and ‘1’ (‘0’ means healthy people and ‘1’ means ASD-patients). Therefore, 

this method set the value of  the label to be the same as that of its nearest neighbor label, so the new 

sample label obtained is ‘0’ or ‘1’. 

The FIGURE 4 flowchart shows how we generated new samples by Mixup: 

 

Figure 4. Generate new samples by Mixup. 

In addition to interpolating between two random samples, we also tried to interpolate between the 

nearest neighbors. We took similarity as a measure of the distance between two samples to obtain the 

nearest neighbor. In order to calculate the similarity among samples, we applied a technology called 

Extended Frobenius Norm (EROS) which has proved to be an effective way to measure the similarity 

of fMRI data in previous studies. We use this method to find the k-nearest neighbors of our training 

samples to obtain higher classification accuracy. 

As FIGURE 5 shows below, after selecting each sample’s nearest neighbors in the training set, we 

randomly picked one among them, the new sample and label is generated using Mixup between the 

chosen neighbor and original sample. The reason why we chose k=5 is that no better results have been 

observed by changing the value of k in our experiment. The label of the new sample is consistent with 

the original sample and its neighbors.   

 

Figure 5. Interpolation between nearest neighbors. 
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Experiments show that interpolation between neighbors can reach higher classification accuracy than 

between two random samples. So, we choose the former as our final data augmentation method. All 

results of the testing phase are achieved by this method. 

 

Figure 6. Generate new feature vectors of training samples. 

As FIGURE 6 shows, subject i and subject j are the feature vectors of the random sample and its 

random neighbor. In this work, these two feature vectors were used to generate the new vectors of train-

ing samples by linear interpolation method. Since each sample in the dataset will be used to generate a 

new sample, the size of our training dataset will be doubled after data augmentation. In fact, we have 

tried to generate multiple new samples with the same original samples, but we did not obtain a signifi-

cant change of the result. 

While learning from the labels of corruption or facing hostile examples, Mixup can enhance the 

robustness of neural networks even though its principle is very simple. In the meanwhile, this method 

improves the generalization ability of speech and tabular data and can be used to stabilize the training 

of Deep Neural Networks and other networks. 

3.4.1.  Sparse autoencoder and deep neural network. Generally, autoencoders are key to the develop-

ment of deep learning as it is part of the unsupervised learning model. The Sparse Autoencoder is one 

of the autoencoders whose training specification includes a sparsity penalty. In this combined algorithm 

with Deep Neural Networks, the loss function is constructed through penalizing activation of hidden 

layers for a few active nodes while the sample is fed into the network. The autoencoder is learning the 

latent representation rather than the redundant from the input dataset. Instead of using the common 𝐿1 

loss function, the loss function that is implemented in the proposed method is through the Huber loss 

function using delta data. The Huber loss is also known as Smooth 𝐿1 loss for its transition point option 

equals one. The formula is as below: 

𝐸 =
1

𝑁
∑∑𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(�̂�𝑖𝑗 − 𝑦𝑖𝑗)

𝑘

𝑗=1

𝑁

𝑖=1

 

The benefit of using the sparse autoencoder is that the model can acquire finer representations and 

activations are sparser, preventing the data from overfitting. With the 𝐿1 regulation, the sparse autoen-

coder is better performing than other general autoencoders. The encoding process generates lower di-

mensional data which contains useful patterns from the original input data. Thus, the new features for 

classification can fully operate within the smaller data sizes. The input of the deep neural network arises 

from the bottleneck of the Sparse Autoencoder.  

The deep neural network will be composed of two hidden layers where the sizes are 2,000 and 2 units 

respectively. To avoid overfitting of the model, the method of Dropout was used between the first and 

the second fully connected layers. To accelerate the training speed and minimize the error brought about 

by the careless initialization of the parameters [18], a batch normalization layer was added between the 

second and the third fully connected layers to remove the ill effects of the internal covariate shift. A 

rectified linear unit (ReLU) was also applied to activate the units after each layer. The ReLU can expand 

the sparsity of the network so that the extracted features will be more representative. Consequently, the 

network will have improved generalization ability. Furthermore, ReLU can solve the missing-gradient 

problem present in the back-propagation process of the deep neural network. The loss of the deep neural 

network is calculated with Binary Cross Entropy. The equation of the Binary Cross Entropy is shown 
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below: 

𝐻𝑝(𝑞) = −
1

𝑁
∑𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

   

The Sparse Autoencoder and the deep neural network developed characteristic extraction while op-

timizing the determination of classifiers after training concurrently.  

3.4.2.  Variational autoencoder and deep neural network. Variational autoencoders (VAE) are varia-

tional Bayesian procedures with a diverse distribution as prior, and a posterior approximated by an arti-

ficial neural network, constructing the variational encoder-decoder model. The Variational Autoencoder 

differs from the common autoencoder as the VAE introduces mapped input to distribution and the bot-

tleneck vector is replaced by two various vectors including the standard deviation of the distribution and 

the mean of the distribution. The main objective of the VAE is the Kullback-Leibler Divergence also 

known as KL divergence, calculated as below:   

𝐷𝐾𝐿(𝑞(𝑥𝑖)||𝑝(𝑥𝑖)) = ∫𝑞(𝑥𝑖)𝑙𝑜𝑔
𝑞(𝑥𝑖)

𝑞(𝑥𝑖)
𝑑𝑧 

The KL divergence is measuring the differences between two distributions. To minimize the gener-

ative modal parameters and reduce the reconstruction error within the network between input and output 

(reconstructed input). Equivalent to minimizing the negative log-likelihood commonly found in most 

optimizations, the objective is to minimize the distribution distances between the real and estimated 

posterior. Therefore, the loss function Evidence Lower Bound (ELBO) is written as:  

𝐿𝐸𝐿𝐵𝑂(𝑥; 𝜃, 𝛷)   ∶=  −∫ 𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)𝑞𝛷(𝑧|𝑥) 𝑑𝑧⏟                
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

+ 𝐷𝐾𝐿(𝑞𝛷(𝑧|𝑥)||𝑝(𝑧))
⏞            
𝐿𝑎𝑡𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 

In order to make the ELBO loss function reliable for training the data, the Stochastic sampling oper-

ation extracts from the latent space, which is a series of multivariate Gaussian Distributions, thus dedi-

cating the probabilistic decoder as follows:  

𝑧~𝑞𝛷(𝑥) = 𝑁(𝜇, 𝜎
2) 

Based on the calculation of the variational autoencoder, the deep neural network takes the filtered 

data with random variables processed by VAE as reconstructed input to train further. The deep neural 

network with the two hidden layers where the units are 4,975 and 2,000 respectively. ReLU was used 

between the fully connected layers. It has been confirmed by Diederik et al., [19] that Adam shows 

better convergence than other methods in the process of stochastic regularization in multi-layer neural 

networks. Adam optimizer is thus applied to update the parameters built upon the computed gradients.   

3.5.  Model validation 

To test our model for its performance, we have adapted the model validation method that the previous 

work has used which is the K-folding cross validation. The validation set is extracted from training set 

data but does not train it. The original data is divided into K folds, k=10. Each of the k sets is to evaluate 

the final result and calculate the Mean Squared Error combined with the means. For each individual site, 

the validation method is used through K-folding when k=5 as other previous studies used the same 

values.  

4.  Experiment and results 

TABLE 1 demonstrates the highest anticorrelation areas for ASD subjects, FIGURE 7 highlights these 

areas in the brain image for visualization. The ASD patients have characteristics of the brain function 

that are decreased anterior-posterior connectivity and the posterior regions are increased corresponding 
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to the connectivity switches in the brain. Due to the one-dimensional aspect of the ABIDE dataset and 

the lack of sponsored clinical facility, the visualization of the fMRI result is adapted from the previous 

studies. These studies are the foundation for a data-driven theory that is heavily based on the brain-

imaging underconnectivity in ASD research which has also been associated with indices of corpus cal-

losum and morphometric brain structures [20].  The frontal-temporal sections like the middle temporal 

and inferior frontal; the fusiform gyrus region and the orbital cortex region, posterior such as the supra-

marginal gyrus area, and anterior with the paracingulate gyrus region of the ASD subjective brains have 

anticorrelation that reflects underconnectivity. The characteristics of the underconnectivity is the basis 

of the proposed model which contributes to the classification procedures.  

Table 1. Summary of the highest anticorrelation areas for ASD subjects. 

Area um-

ber 

Source Green 

Area 

Red Marker Area Blue Marker Area Yellow Marker Area 

a The Paracingu-

late Gyrus Re-

gion 

Middle Temporal 

Gyrus; posterior di-

vision 

The Precuneus Cor-

tex Region 

The Temporal Fusi-

form Cortex; poste-

rior division 

b Supramarginal 

Gyrus Region 

Inferior Frontal Gy-

rus Region 

The Superior Tem-

poral Gyrus Region 

The Frontal Orbital 

Cortex Region 

c Middle Tem-

poral Gyrus Re-

gion 

Paracingulate Gyrus 

Region 

The Precuneus Cor-

tex, Cingulate Gyrus 

Region 

The Lateral Occipital 

Cortex Region 

 

 

Figure 7. Related Summary of the highest anticorrelation areas brain imaging. 

4.1.  Running time  

Based on the previous studies, the running time by ASD-DiagNet is around 41 minutes, around 7h and 

48 minutes by the Support Vector Machine learning (SVM), around 17 min with random forest ap-

proach, and 6 hours by the method of Heinsfeld et al. [9]. The proposed method of B.1 runs 2 hours and 

38 minutes while the other method B.2 runs 3 hours and 19 minutes. ASD-DiagNet in general performs 

faster in speed of training and validation, but our proposed methods are relatively fast compared to the 

SVM and Heinsfeld et al. [9].  
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4.2.  General accuracy 

In the proposed experiment of our method, there are two different approaches with both method B.1 and 

B.2. The ABIDE dataset, including 1035 subjects, has patients from various sites. Therefore, the result 

is summarized from both individual sites and the generalization across different data acquisition sites. 

Different performance compared to the past models through the three significant values Accuracy, Sen-

sitivity and Specificity. The three values measure different aspects of the dataset. To be more specific, 

the value of Accuracy determines the percentage of correctly classified subjects, whether or not the 

actual ASD is classified as ASD, and the control group is classified as healthy. The second value of 

Sensitivity measures the percentage of real ASD patients which are accurately considered carrying the 

ASD. The last value of Specificity illustrates the percentage of successfully classified healthy subjects. 

As TABLE 2 indicates, the two proposed methods in this work all have much better results than the 

methods from previous studies by Heinsfeld et al., [9] and Eslami et al., [4]. Since the limitation of the 

dataset, the final result is extracted from the best performances from each cross validation that the trained 

data could generate, and then calculate the average from the extracted results. FIGURE 8 compares the 

ASD classification accuracy of the proposed methods and the previous methods. The B.1 method has 

better accuracy and sensitivity value in contrast to the result from the B.2 method. The specificity from 

both methods is equal.  

Table 2. The comparison between the current method with the previous work’s method like ASD-

SAENet and ASD-DiagNet. 

Method Accuracy (%) Sensitivity (%) Specificity (%) 

B.1 75.5 72.8 78.1 

B.2 75.2 72.3 78.1 

ASD-SAENet 70.8 62.2 79.1 

ASD-DiagNet (2019) 70.3 68.3 72.2 

ASD-DiagNet (2018) 70 74 63 

 

 

Figure 8. Method’s Accuracy in Classifying the ASD with ABIDE Dataset. 

4.3.  Individual site’s accuracy 

After testing the accuracy result, the accuracy for each individual medical/university site that is within 
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the data is also important. TABLE 3 shows the comparison between the results of method B.1 and 

method B.2. Method B.1 is the method that uses Sparse Autoencoder with Mixup data augmentation 

and deep neural network. Method B.2 is the method of using Variational Autoencoder instead of auto-

encoder enlarging the original dataset with reconstructive input.  

To evaluate further, the medical/university acquisition sites for individual accuracy are calculated 

between the proposed methods B.1 and B.2. Through comparison between the classification accuracy 

of the two methods among 17 sites, we found out that B.2 using Variational Autoencoder is a little bit 

better than B.1 using Sparse Autoencoder on the average scale. Out of 17 acquisition sites, there are 

equal numbers of sites for both B.1 and B.2 methods to shine, eight sites that work better with SAE, the 

other eight sites work better with VAE. There is one site that works equally between SAE and VAE. 

However, the B.2 method has significant accuracy when training the OHSU sites. For the OHSU site, it 

is the sample collected from Oregon Health and Science University. The sample size has a total number 

of 28 people ranging from eight to fifteen years old. The control group is around 15 people, whereas the 

Autism patients are 13 people. This site includes data that is suitable to the model of VAE. After the 

reconstructed input, the accuracy is higher. Several sites which have lower accuracy despite the differ-

ence in method are MaxMun, Trinity which indicate that these two datasets have more variability that 

are absent in other sites. The MaxMun is the data from the Ludwig Maximilians University Munich 

while Trinity is the Trinity Centre for Health Sciences. Both sites have more people in the control group 

than the targeted autism group; the imbalance between the two might cause the accuracy to be lower as 

well. 

Table 3. The accuracy through the current model B.1 (SAE+MIXUP+DNN) and model B.2 

(VAE+MIXUP+DNN) for each imaging site of ABIDE dataset. 

Site B.1 B.2 

Caltech 60 65.4 

CMU 59.3 67.3 

KKI 64.4 70.7 

Leuven 66.7 60.3 

MaxMun 51.8 49.5 

NYU 61.7 69.7 

OHSU 76.7 88.7 

OLIN 65.7 62.4 

PITT 53.6 64.1 

SBL 63.3 50 

SDSU 70 63.9 

Standord 62.1 74.6 

Trinity 54.9 46.4 

UCLA 62.4 68.5 

Proceedings of  the 4th International  Conference on Computing and Data Science (CONF-CDS 2022) 
DOI:  10.54254/2755-2721/2/20220528 

41 



 

Table 3. (continued). 

UM 68.9 68.9 

USM 64.3 62.1 

YALE 61 57.4 

Average 63.2 64.1 

5.  Conclusion 

In this work, the data set from ABIDE consists of fMRI data provided by 17 different sites. Each dataset 

of the 17 sites was collected from patients with different scanning methods and devices. To avoid the 

overfitting of the results of the model, Mixup was applied to enlarge the dataset. In order to reduce the 

number of the features, Sparse Autoencoder is used before the process of classification. A deep neural 

network functioned as a classifier that got its inputs from the outputs of the encoding process of the 

Sparse Autoencoder. Between the linear fully connected layers in the deep neural network were con-

firmed methods like Dropout and Batch Normalization to further reduce the possibility of overfitting. 

In the second model, the deep neural network functioning as a classifier took the filtered data with 

random variables processed by VAE as reconstructed input to train further. Rectified Linear Units were 

added between the linear fully connected layers as activation functions. The accuracy of the results of 

the “Mixup+SAE+DNN” and “Mixup+VAE+DNN” are about 75.5% and 75.2% respectively, which 

outperformed the other state-of-the-art method by 4.7% and 4.4%. The further significance of this pro-

ject is to help develop our perception of the neurobiological foundation of the ASD.  

Multiple sites with different subjects, scanning procedures and equipment compared to single-site 

datasets [8] added noise to the brain-imaging dataset that disputes the classification performance. How-

ever, the achievement of a reliable classification accuracy without the noise shows prospects for the 

machine learning utilization in later clinical datasets. The future application of machine learning will 

help identify mental disorders of other kinds [9]. 
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