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Abstract. This article provided an introduction of applying reinforcement learning to games, 

including board games and video games like Backgammon, Go, and Dota2. The reason for 

choosing reinforcement learning to solve game problems was analyzed. The article also reviewed 

the reinforcement learning technique and introduced two optimizing learning methods, Temporal 

Difference learning and Q learning. Then, three important cases of using reinforcement learning 

to reach high level game skill, TD-gammon, AlphaGo, and OpenAI Five, were introduced. In 

the end, the future possibility of applying reinforcement learning in broader way was analyzed. 
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1.  Introduction 

Since the rules of games, especially board games, are clear-cut, and thus it is easy to imitate in a 

computer environment and easy to evaluate performance, games are often used as platforms for testing 

computer programs [1] [2]. After the introduction of modern machine learning, it was quickly applied 

to solve games. Supervised learning was tried by at an early stage, but this method also contained the 

flaw of human evaluation [3]. Therefore, the programs could only reach a high human level but cannot 

win against human players.  

A better method called reinforcement learning was invented later in the 1980s [4]. This method was 

based on the animal psychology of trial and learning, combined with the value function and dynamic 

programming. The computer program could learn from self play by adjusting parameters within the 

function. This method fitted perfectly in the context of the games. Therefore, after the advent of 

reinforcement learning, there have been many breakthroughs.  

From the 1990s to today, reinforcement learning was kept proving by scientists that it was the best 

way to train game AI. TD-gammon in the 1990s utilized the TD(λ) method, which solved the problem 

of implementing dynamic programming in machine learning [5]. Google Deepmind brought this method 

to the peak of board game AI after introducing AlphaGo. Different versions of AlphaGo all won over 

different top human Go players, including the reigning human player Ke Jie in 2017. Shortly, in 2019, 

the game AI OpenAI Five won against reigning human team OG in the game Dota2, proving that 

reinforcement learning even worked well in complex video games [6].  

This paper will cover a basic review of reinforcement learning in section 2. And then three important 

reinforcement learning cases in games, TD-Gammon, AlphaGo, and OpenAI Five, will be described in 

section 3.   
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2.  Reinforcement learning 

The phrase “reinforcement learning” first appeared in the 1960s, but the development of this technique 

was slow for some years until it revived in the 1980s [4]. During these years, scientists tried to refine 

reinforcement learning in two main directions [4]. The first direction was based on the idea of trial and 

error. The AI tried to accomplish one goal many times, and the scientists hoped the AI was able to learn 

from failure in some ways. The second direction focused on calculating an optimal solution by using 

value functions and dynamic programming. There was also a minor third research direction focused on 

temporal difference algorithms. And finally, these three algorithms combined together to form today’s 

modern reinforcement learning. 

In reinforcement learning, as shown in figure 1, a program that can interact with the environment is 

called an agent, and the environment contains the problem that the agent needs to solve [7]. The agent 

is able to obtain the current state of the environment, and it can also take actions to alter the state of the 

environment. After each action taken, the agent will receive an immediate reward. And the agent will 

receive a series of immediate rewards after taking a series of actions until the game ends. The goal of 

the agent is to maximum accumulated reward [7]. 

 

Figure 1. The agent interacts with the environment. The goal of agents is learning a policy that takes a 

series of actions that maximizes its accumulated reward [7]. 

To be specific, the environment responds to the agent’s action based on the state-action transition 

function and reward function. Both functions take current state and action as parameters, and they would 

produce “next state” and “immediate reward” respectively. However, the agent doesn’t know what 

function the environment is using. Therefore, the agent needs to find out these two functions during 

training. And basing on these two functions, the agent can find the maximum accumulated reward.  

The main challenge the agents face is the credit assignment problem [8]. The agent needs to assign 

credits to previous actions when a reward is received. Since the policy for the agent is a series of actions, 

the immediate reward gained after taking an action might be the result of previous actions. Therefore, 

because previous actions are also crucial, they also deserve credits. However, it is hard to assign credits 

to previous actions because some of them are more important than the others. As a result, this becomes 

a main challenge in reinforcement learning. 

One method in dealing with this challenge is the Temporal Difference (TD) method [8]. The TD 

method allows agents to update its evaluation from the temporarily successive experience during 

training [1]. In the conventional training process, the network is trained based on the difference between 

current evaluation and the true evaluation. But, in the TD method, the network will update its evaluation 

gradually based on the previous evaluation. The idea of optimizing is to optimize the weight in the 

neural network. And the final weight is just the initial weight plus the sum up of the weight difference 

at different timestep. In this way, the update of weight only depends on the previous estimation. This 

will make the algorithm perform better since the “true evaluations” used before are usually based on the 

human experience, and human experience is not absolutely correct. On the other hand, using the 

previous experience of the agent to update the function will not be influenced by human bias. This 

method is proved to converge to the true evaluation [1]. There are also other advantages. It also takes 
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less memory and computation resources because it only needs to store temporary estimations and the 

updating algorithm is easy.  

Another method dealing with this challenge is called Q learning [8]. This method defines a Q function 

𝑄(𝑠, 𝑎) that is able to directly give the accumulated reward of doing an action in such a state. Therefore, 

the quality of an action is summarized in a single function for future use. This function is updated based 

on the equation 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑅(𝑠)  +  𝛾 𝑚𝑎𝑥𝑄(𝑠′, 𝑎′ ) − 𝑄(𝑠, 𝑎)). 

The Q function updates its value based on the maximum Q value in the next state-action pair. This 

method is very practical because calculating the true Q value iteratively and repeatedly costs lots of 

resources. The scientists prove that if the Q can converge, it must satisfy three conditions [7]: first, the 

system is a deterministic Markov Decision Process; second, the immediate reward has a bound; and 

third, during training, the agent has infinitely visited every possible state-action.  

3.  Reinforcement learning in games 

Board games are considered as good platforms to perform testing for the concepts of machine learning. 

Board games like Go, Chess, and Backgammon are complex enough that cannot be learned with brutely 

enumeration methods, but they have a clear-cut rule and are easy to imitate in a computer program [1] 

[2]. These two features make them become the best platform for machine learning. 

Reinforcement learning is intuitively suitable to solve games [8]. The game itself is the environment 

and the players are agents. Scores can be viewed as reward, and agents can only choose actions in a 

finite set. Reinforcement learning makes the computer agents reach master level, even superhuman level. 

The following three examples show the rise of reinforcement learning in board games, the peak this 

method reached, and the possible future implementation and potential of this method in the games area.  

3.1.  Backgammon 

Backgammon is a classic two-player game which has a long history and it is known for its high 

probability and high randomness [2]. The player needs to roll two dice and move accordingly. When the 

two dice have the same point, the player can double the points on the dice and move accordingly. There 

is also a special rule that allows one player to “eat” another player’s checker to gain advantage, which 

further increases the complexity of the game.  

Before the application of reinforcement learning, many attempts have been made to build a program 

that could reach the human master level of backgammon, but all of them are not success. One of the 

most famous ones was called Neurogammon, which won the backgammon competition in the first 

Computer Olympiad in 1989 [3]. This program mainly trained a neural network based on supervised 

learning and human data [3]. A group of backgammon experts provided data that described good moves 

and bad moves in a given situation. The network was told that good moves would score higher than the 

bad moves. And the desirable output of the programs were good moves [3]. However, there were 

tremendously huge numbers of situations in the backgammon games, and it was impossible for experts 

to give their evaluations for each of them. Moreover, the data given by the experts were not always right. 

Their understanding of the games might not be accurate and often contained many biases based on their 

experience [2].    

In 1992, a program called TD-Gammon reached master level compared to human players. It was 

based on reinforcement learning and the evaluation method is TD(λ) method. It was one of the most 

famous implementations of the TD(λ) method after this method was mathematically proved. TD-

Gammon was the first computer program that reached master level in the game of backgammon. 

In TD(λ), the weight difference △ 𝑤𝑡 that needs to be updated is,  

△ 𝑤𝑡 =  𝛼 (𝑃𝑡+1 − 𝑃𝑡) ∑ 𝜆𝑡−𝑘 𝛻𝑤𝑃𝑘

𝑡

𝑘=1
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where 𝑃𝑡 is the prediction of the final weight at timestep t. 𝛻𝑤𝑃𝑘 is the gradient, and λ is a discounted 

factor that allows gradual updating, which makes the updating process smoother.  

TD-Gammon trained from raw with random strategies and self-play. The input was merely a current 

situation on the board. As shown in the table 1, with several version updates, TD-Gammon 2.1 has been 

trained for 1,500,000 games, and it only lost 1 point in 40 games when playing with top human players. 

This was not a victory toward humans, but it still demonstrated high-level skill and outperformed other 

contemporary backgammon programs [5].   

Table 1. Results of testing TD-Gammon in play against World-Class human opponents [5]. 

Program Training games Opponents Results 

TD-Gammon 1.0 300,000 Robertie, Davis, Magriel -13 pts/51 games (-0.25 

ppg) 

TD-Gammon 2.0 800,000 Goulding, Woolsey, 

Snellings, Russell, 

Sylvester 

-7 pts/38 games (-0.18 ppg) 

TD-Gammon 2.1 1,500,000 Robertie -1 pt/40 games (-0.02 ppg) 

3.2.  AlphaGo 

AlphaGo was one of the most famous successful AI cases. It was designed by DeepMind under Google. 

After AlphaGo defeated world top Go player Lee Sedol and Ke Jie in 2016 and 2017 respectively, a lot 

more AI researchers began to focus on the algorithms and logic of Alpha Go [9]. After the publication 

of AlphaGo Zero, the method of reinforcement learning reached its peak in board games.  

There were many versions of AlphaGo [10]. The first published version of AlphaGo, AlphaGo Fan, 

won the European championship Fan Hui in 2015. The version defeated Lee was called AlphaGo Lee 

and the version defeated Ke was called AlphaGo Master. After defeating the reigning world champion, 

DeepMind stopped playing with human players. The final version of AlphaGo was AlphaGo Zero, 

which won AlphaGo Master over 89 games in 100 games.  

Both AlphaGo Fan and AlphaGo Lee utilized similar architecture and algorithms. Two separate deep 

neural networks as its policy network and value network. These two networks were both trained by 

human data and experience [10]. And a method called Monte-Carlo Tree Search (MCTS) was applied 

for lookahead searching. This framework was easy to understand and to implement, but had a great 

performance in game AI [11]. Starting from some states, the framework selected an action that balanced 

exploitation and exploration. And when it reached a state that never appeared in the tree, it started to 

simulate. The result of the simulation would be backpropagated to the whole tree, as shown in Figure 2 

[11].  

 

Figure 2. Outline of a Monte-Carlo Tree Search [11]. 
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AlphaGo Zero outperformed its predecessors by applying two important modifications [10]. First, 

only one neural network was used in AlphaGo Zero. The neural network could produce both a vector of 

probabilities and a value. The vector gave the probabilities that the agent chose each action, and the 

value was a prediction of the win rate of the current player. Moreover, a simpler tree search replaced 

MCTS that suited this single neural network. The second modification, also the more important one, 

was that AlphaGo Zero abandoned the data from human-players and trained solely on self-play games 

[10].  

The result of these modifications was astonishing. AlphaGo Zero outperformed AlphaGo Lee in only 

one and half days starting from the raw, even though AlphaGo Lee was trained for several months back 

then. After 3 days training, AlphaGo Zero beat AlphaGo Lee with a 100:0 win rate. It then quickly 

outperformed AlphaGo master as well. Purely self-play reinforcement learning was proved to be 

absolutely practicable [10]. The performance evaluated by Elo rating method is shown below in figure 

3. 

 

Figure 3. Final performance of AlphaGo Zero and other agents evaluated by Elo rating method [10]. 

AlphaGo started the new era of AI since it integrated the whole knowledge of AI at that time and 

showed the strength of this technology [9]. It also started an era of making decisions based on sufficient 

data and computations rather than logical reasoning.  

3.3.  OpenAI Five 

OpenAI Five was a reinforcement learning AI system designed by OpenAI company used to play the 

video game Dota 2, one of the famous Multiplayer online battle arena (MOBA) games. Complex video 

games provided a great platform to imitate real-world problems. These problems usually contained lots 

of aspects and had a long-time horizon.  

Dota 2 is one of those video games. To be specific, one match of Dota 2 usually lasts 45 minutes, 

and the agent needs to decide an action for about every 0.13 second. To contrast, Go only has about 150 

actions per match. Moreover, the agent needs to observe about 16,000 values from the game per step 

and has an action space for over 8,000 actions, while Go only has a pool of about 250 actions per step. 

Beside the volume of the game, Dota 2 is also imperfectly observable. The agent is not able to see the 

whole map due to the rules of the game. Information like the position of the enemies and parts of the 

map are usually hidden. Therefore, the agent is required to have the ability to speculate a lot of 

information.  

The policy optimizing method of OpenAI Five was the Proximal Policy Optimization (PPO). It was 

a kind of policy gradient method. PPO used multiple epochs of stochastic gradient ascent to perform 

minibatch update. It retained the advantages of the trust-region method but was much easier to code and 

required less samples to achieve goal function [12]. Policy gradient method was based on the idea of 

optimizing a “surrogate” objective function. And the astonishing part of PPO was that it used a novel 

surrogate function,  

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸̂𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)], 
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where θ is the vector of policy parameters and 𝐸̂𝑡[…] is the empirical expectation over timesteps. 

The first parameter in the min 𝑟𝑡(𝜃)𝐴̂𝑡 means the probability ratio of the new policy to the old policy, 

times the estimated value of advantage function. And the clip means the probability ratio must be in the 

interval of 1 − 𝜖 and 1 + 𝜖. 𝜖 is usually 0.1 or 0.2. This “surrogate” objective function was inspired by 

the one used in trust region methods. But this surrogate function performed better when optimizing it 

using stochastic gradient ascent. When the OpenAI Five team implemented this method, they used 

Generalized Advantage Estimation (GAE) to estimate the value of advantage function. GAE was able 

to provide a steady and fast environment during training. The agent contained a Long Short-Term 

Memory (LSTM) Recurrent Neural Network (RNN). This network performed very well on large scale 

acoustic modeling and efficiently exploited parameters of model [13]. 

The whole training process is shown below in figure 4. OpenAI Five used a large number of CPUs 

and GPUs during training and trained for 10 months. A “Rollout Worker” contained 51,200 CPUs that 

ran the game parallelly. The Rollout Worker ran the game in half speed because in this speed the Rollout 

Worker was able to run slightly more than 2 times games parallelly. Four fifths of games were played 

using the latest policy and 1/5 of games were played using the older policy. All game data was 

transferred to the Optimizer part, which contained 512 GPUs. The game data was stored in the local 

buffers of GPUs and GPUs would calculate the gradient using the game data selected randomly from 

the buffer. Then, the GPUs would give the new version of parameters to the Controller every 32 gradient 

steps. The Controller was able to stop and restart training. It communicated with the Forward Pass GPU 

group with the latest parameters. Finally, the Forward Pass GPU group ran forward passes to the Rollout 

Worker, which complete the whole process.   

 

 

Figure 4. System overview of OpenAI Five [6]. 

OpenAI Five used the narrative information that human players could also get from the game as the 

agent’s observation, rather than the pixel information. The team did that because first they wanted to 

focus on logical processing rather than visual processing, and second, it was improper to track and to 

analyze all the pixels for 45 minutes [6].  

Proceedings of  the 4th International  Conference on Computing and Data Science (CONF-CDS 2022) 
DOI:  10.54254/2755-2721/2/20220556 

110 



Since the training process was unprecedentedly long, the environment changed periodically during 

the training process. These changes were caused by modifying the training process and the updating of 

the game itself. However, training the agent from raw after each change was infeasible because of the 

limited resources. Therefore, a novel method called “surgery” was introduced during the training 

process. During the surgery process, the system would be offline and would turn the old model into a 

new model, even though the number of parameters might not be the same. This method was sufficient 

to enable the agent to reach superhuman performance, but it is not perfect. The OpenAI team performed 

a “Rerun” which was trained from raw in the final version of games. It outperformed the OpenAI Five 

and got a win rate of 98% against OpenAI Five. As a result, the method of maintaining the performance 

of agents in a constantly changing environment in long-term training was worth studying. 

Despite the astonishing performance of the OpenAI Five, it was based on some compromises. The 

first compromise is that the agent was only able to select in a pool of 17 heroes, while there were 117 

heroes to be chosen in the game. The second one was that the agent could not control multi-units at the 

same time. There were some heroes and items that allowed one player to control multiple units at the 

same time, but the agent could not do this. The third one was that some strategies of agents were fixed. 

Strategies like item purchasing, ability learning, and courier controlling were set by human hand scripts. 

After 10 months training, the OpenAI Five defeated the reigning world champion in 2019, 

demonstrating the superhuman ability of the AI. The team also opened the AI program to the public. 

Surprisingly, 29 teams managed to defeat this AI in 42 matches. This meant the AI still had many 

imperfect aspects, especially when it encountered new situations that it never met in the training. 

4.  Conclusion 

One thing to be noticed is that TD-Gammon would perform better if adding some human scripts. 

Compared to the AlphaGo Zero case, this shows that the implementation of TD method by the TD-

Gammon still had room for improvement. The subsequent agents like AlphaGo Zero and OpenAI Five 

both show that training without human language, but with larger and more resourceful training would 

result in a better AI in the end. Despite the tiny error TD-Gammon made, TD method was still the most 

promising algorithm back then. Reinforcement learning began to show its power because of the TD 

method. It substantially enhanced the calculation efficiency and allowed the computer back then to 

calculate large reinforcement learning.  

The peak of reinforcement learning was reached when DeepMind published AlphaGo. AlphaGo 

didn’t invent any new AI theory, but it integrated the most advanced AI methods back then and 

implemented them into a usable AI. Moreover, AlphaGo also broke the traditional causal relationship 

between problems and solutions. It showed that with sufficient data and calculations, problems can be 

solved without logical confirmation. This led information technology to a new era [9].  

After board games, complex video games became the next target of reinforcement learning experts. 

OpenAI Five showed that the basic idea of reinforcement learning still works well on games with 

complex rules, but the training process needed a huge amount of time and resources. The new focus of 

reinforcement learning now becomes how to deal with tasks with a long-time horizon and in a changing 

environment. Although the OpenAI team provided the “surgery” method to deal with it, the method is 

far more than perfect and need revisions. Moreover, the tasks and environments in the future are going 

to be predictably more complex. The methods to solve problems in these situations without 

compromising are still vital and urgent.  
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