Proceedings of CONF-CDS 2025 Symposium: Application of Machine Learning in Engineering
DOI: 10.54254/2755-2721/2025.AST26307

Modeling Real Estate Transaction Prices in Tokyo: The Value
of Comprehensive Metadata in Unsupervised Clustering and
Predictive Modeling Analysis

Zeyu Hou

College of Letters and Science, University of California, Santa Barbara, USA
zeyulucas@163.com

Japanese modern real estate market has experienced drastic fluctuation since the
explosion of the bubble economy. After few years of depression, the transaction price
eventually converged to a stable state due to the stable household savings of business
corporations and developed typical trends that were suitable for modeling. This study
explores the determinants of real estate transaction prices in Tokyo, leveraging a large-scale
dataset comprising over 400,000 observations. Among the various models evaluated, the
Random Forest model had the best performance, with an RMSE of approximately ¥185
million and an R? of 0.577 on the detailed set. In contrast, the limited dataset shows lower
predictive power, with higher RMSE and lower R?, highlighting the importance of structural
features in price prediction. Key variables such as unit price, floor area ratio, land breadth,
and building year consistently emerge as significant predictors. This research demonstrates
that the inclusion of detailed building characteristics substantially improves model accuracy
and interpretability in urban real estate modeling.

Modeling, Japanese Real Estate, Data Analysis, Unsupervised Clustering, Tokyo
Real Estate Market

Real estate price modeling has long been a critical area of study within urban economics, data
science, and policy planning. Large-scale property transaction datasets are becoming more widely
available, giving academics the chance to quantitatively examine housing market dynamics at
previously unheard-of geographical and temporal precision. In Japan, however, publicly available
datasets that span multiple decades and include both geographical and structural property details are
relatively rare. The "Japan Real Estate Transaction Prices" dataset, surveyed by the Ministry of
Land, Infrastructure, Transport and Tourism (MLIT) and hosted on Kaggle, fills this gap by
providing detailed transaction data from 2005 to 2019 across all 47 prefectures, including Tokyo [1].

Despite the rich structure of this dataset, many previous works have relied primarily on
geographical or macro-level features, neglecting the role of property-specific characteristics (e.g.,
floor area, building type, renovation status) in shaping price variability. This study bridges that gap
by specifically targeting Tokyo’s real estate market and comparing the predictive performance of
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models trained on two distinct subsets: a detailed subset that includes building features, and a
limited subset that excludes them, while contains extra information such as floor plan. This study
aims to improve real estate price prediction accuracy and to understand which structural and
regional attributes matter most in urban housing valuation. Research findings provide valuable
insights for data-driven housing policy, urban planning, and market transparency in Japan's rapidly
aging and fluctuating property landscape.

Previous research underscores the critical role of detailed structural attributes in urban landprice
modeling. As projected by Uto et al., housing asset values are anticipated to plummet by
approximately 94 trillion JPY by 2045 [2]. In particular, suburban regions are expected to
experience losses exceeding 10 million JPY per household. This trend poses significant economic
challenges for the implementation of compact city policies. Tsutsumi and colleagues show that their
GIS-based regression kriging workflow yields a cross-validated RMSE of only 0.19 log units and
enables automated land price mapping with over 90% cost savings relative to manual approaches
[3].

Policydriven capital flows have also shaped Tokyo’s realestate dynamics. Yabe finds that J-REITs
consistently influenced annual land price changes, though their positive effects were largely
confined to business districts like Hibiya, Shinjuku, and Shibuya [4]. Matsumura also reports that
the TSE REIT Index surged by 18.6 percent in the quarter, despite Tokyo’s office vacancy rate
climbing to 6.0 percent—the highest level since December 1996 [5].

Longerterm structural shifts are equally impactful. Yamakata notes that annual real estate
securitization grew from 1.9 trillion yen in 2000 to 6.9 trillion yen in 2005, coinciding with an
increase in the 23-ward vacancy rate from 4.7 to 6.0 percent [6]. Meanwhile, the 2025 official land
price data collected through National Land Survey indicate that residential land prices in the Tokyo
metropolitan area rose by 4.2 percent year-on-year. This increase is driven by redevelopment
projects and the popularity of inbound tourism areas [7].

At the micro level, tenant preferences and market segmentation continue to be crucial factors.
Uesugi and Kirimura reveal that each extra minute of walking time to a station lowers monthly rent
by ¥120, highlighting spatial variation across Tokyo’s wards [8]. Tanaka, Mari, and Asami, in
compare central and suburban markets and find that factors like station proximity, garage
availability, and setback rules strongly influence price similarity in Tokyo, whereas building age and
CBD accessibility play a larger role in suburban Aoba Ward [9].

Given Tokyo’s pivotal economic and demographic role, and to minimize regional heterogeneity in
modeling, this research focuses exclusively on transactions within Tokyo prefecture. Despite being
confined to a single prefecture, the dataset remains robust, with a sufficiently large sample size and
ample variation in structural and regulatory factors to support sophisticated analysis.

To address the dual challenges of data completeness and variable richness, this study deliberately
partitioned the dataset into two distinct subsets: the detailed dataset and the limited dataset. This
insight came from observing metadata patterns. Transactions that included Direction and Landscape
information tended to contain more variables overall. Thus, the Tokyo dataset is divided into two
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partitions: detailed observations with high metadata availability such as Classification and Breath
and limited observations with sparse descriptors such as FloorPlan. The resulting detailed set
consists of approximately 147,000 observations, while the limited set, after basic NA filtering,
contains around 169,000 rows.

3.2. Data analysis
3.2.1. Exploratory data analysis

Initial exploratory data analysis (EDA) was carried out on both the detailed and limited subsets to
identify distributional properties, anomalies, and potential predictors. Continuous variables,
including Area, UnitPrice, MinTimeToNearestStation, TotalFloorArea, and CoverageRatio, were
visualized using histograms and density plots.

Categorical variables such as FloorPlan, Structure, CityPlanning, and Region were explored
through frequency tables and bar plots. Notably, the FloorPlan variable exhibited high cardinality
with values like "2LDK", "3LDK+S", and "1R", reflecting Japanese real estate norms. These were
retained without simplification but encoded later using one-hot encoding.

(a) Frequency of Log Trade Price (b) Trade Price by Total Floor Area (c) Trade Price by Structure
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Figure 1. Moderate associations between TradePrice, TotalFloorArea, and Structure for the Detailed
Subset

For detailed subset, Figurel unveiled moderate associations between TradePrice, TotalFloorArea,
and Structure. Figure 1(a) revealed that after log transformation, the trade price displayed a normal
distribution with center at e™ (17.5) — 1 =4x10"7 yen. Figure 1(b) displayed a nonlinear but positive
association with heteroscedasticity. Figure 1(c) illustrated the distribution of trade price under each
type of structure.
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Figure 2. Moderate associations between TradePrice, Area, and TradePrice for the Detailed Subset

For limited subset, Figure 2 unveiled moderate associations between TradePrice, TotalFloorArea,
and FloorPlan. Similar to the detailed subset, Figure 2(a) revealed that after log transformation the
trade price displayed a normal distribution with center at e (16.5) — 1 = 1.465%x10"7 yen. Unlike the
detailed subset, Figure 2(b) displayed distinct and conspicuous directions toward up and right,
indicating the lack of sufficient structural or contextual variables to fully explain price variation,
potentially obscuring any strong relationship between size and price. Figure 1(c) illustrated the
distribution of trade price under each type of Floor Plans instead of structure.

These visualizations brought a glimpse of the both detailed and limited data set, providing
potential research and modeling directions for this study.

In addition, this study also inspected the pattern of missing data. The variable TotalFloorArea
showed non-random missingness, which was partially imputable using Area and FloorAreaRatio via
the relation: Total Floor Area ~ Area * FAR. Thus, for observations lacking TotalFloorArea, through
computing an imputed version using this formula and flagging imputed entries via a logical column
(TotalFloorArea imputed), missing values are implemented. This technique reduced data loss
without introducing significant bias, as validated through visual inspection and summary
comparisons.

To uncover latent market segments, this study applied k-means clustering to both the detailed and
limited datasets. Prior to clustering, continuous variables were scaled using z-scores, and non-
numeric columns were excluded. Experimented with cluster sizes ranging from 2 to 6, optimal
number 4 is selected using the elbow method and average silhouette width.
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Figure 3. Clustering result for detailed subset

In the detailed subset, as displayed in figure 3, kmeans clustering identified four residential
segments distinguished by structural and locational characteristics. Cluster 1 comprises moderately
highpriced, mediumsized properties with relatively older building stock located closest to rail
stations; these units are predominantly constructed from reinforced concrete or steel and occupy
regular, semirectangular or rectangular lots—echoing Tanaka, Mari, and Asami’s observation that
the general difference among each clusters of properties is closely corresponding to the different
time cost of walking to the nearest railway station [7]. Cluster 2 includes belowaverage price and
size homes that are newer, farther from stations, and largely wooden in construction. Cluster 3
represents an ultrapremium segment of spacious, older dwellings in prime locations, composed
almost exclusively of reinforced concrete. Cluster 4 consists of lowpriced, compact newer homes
that nonetheless remain in close proximity to transit and are typically woodframed.
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Figure 4. Clustering result of limited subset
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In the limited subset, clustering yielded groups characterized primarily by unit type, broad zoning
context, and age rather than detailed structural features. As shown in figure 4, Cluster 1 groups the
lowestpriced studiotype condominiums (1K — 1LDK) concentrated in commercial districts, all
newly built and situated immediately adjacent to stations. Cluster2 encompasses midpriced
familysized units (2 — 4 LDK) in quasiindustrial or residential zones, newer but located farther from
transit. Cluster 3 is defined by the oldest, smalltomidsized units with the lowest prices, positioned in
mixed quasiindustrial/residential areas at moderate station distances. Cluster4 captures the
highestpriced band of spacious units (up to 3 LDK) along commercial corridors, newer in
construction and very close to rail—supporting Tanaka, Mari, and Asami’s finding that within the
less central area of Tokyo, the age of the building, the approachability to the major and popular
business districts and the land utilization are crucial to the similarity within each cluster [7].

TradePrice is regarded as the response variable in predictive modeling. This study employed a split-
sample approach with 80% of data used for training and 20% for testing. For each subset (detailed
and limited), three model classes are evaluated: multiple linear regression, random forest, and
XGBoost.

Preprocessing was standardized using the recipes package. Every numerical variable was scaled,
centered, and, if required, median-imputed. Categorical predictors were one-hot encoded. In several
first regression attempts, multicollinearity and high p-values were identified. To address it, this study
removed redundant and insignificant predictors based on model diagnostics and thus refined the
feature set accordingly.

In the linear regression on the detailed set, key predictors included Area, UnitPrice, BuildingYear,
and MinTimeToNearestStation. Categorical variables such as CityPlanning zones and Direction also
exhibited explanatory power. The model achieved an R-squared of approximately 0.425 and RMSE
of 1.55 * 10”8 yen. While moderate, this reflected known limitations in modeling real estate prices
using only observable structural variables.

Next, Random Forest model was applied using the randomForest package. With 100 trees, the
model achieved significantly improved metrics: RMSE of approximately 6.77 * 10"7 and R-squared
of 0.90 on training, and generalization RMSE of 1.85 * 10"7 on testing. Variable importance plots
showed Area, UnitPrice, and MinTimeToNearestStation as top contributors, followed by
FloorAreaRatio and CityPlanning zone. Random forest was resilient to nonlinearity and interaction
effects, outperforming linear regression particularly on the detailed dataset.

An XGBoost model was then trained with hyperparameter tuning. This model delivered slightly
lower performance than Random Forest with a test R-squared of 0.55 and RMSE around 1.90 *
1077, suggesting that tree-based ensemble methods are generally robust, yet XGBoost may require
deeper parameter optimization.

Moving to the limited subset, despite the reduced feature richness, the ordinary least squares
model still explained roughly 37 percent of the variance (R?* =0.37) with an RMSE around
¥9.4 * 1077, underscoring the continued importance of core locational and built-form indicators
even when fine-grained metadata are removed.

A random-forest ensemble—constructed with 100 trees on the same processed inputs—
substantially improved both fit and generalization. Training-set performance soared (R* =0.88;
RMSE =¥5.3 #10"7), and hold-out RMSE dropped to about ¥1.90 * 10"7. Variable-importance
measures highlighted lot area, building year, and transit proximity as the strongest predictors,
followed by coverage ratio and floor-area ratio. Notably, the absence of frontage and land-shape
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features did little to diminish the ability to uncover the nonlinear interactions that drive price
variation—an advantage of tree-based methods in limited-feature settings.

An XGBoost model was then trained with grid-search tuning over max depth, learning rate, and
minimum child weight. Although it captured many of the same nonlinear effects, its test-set R?
plateaued near 0.53 with an RMSE of approximately ¥2.05 * 1077, slightly worse than the random
forest. This implies that gradient boosting may need more thorough parameter calibration to match
the resilience of forests when structural richness is limited by missing data, but it still outperforms
linear models in terms of predictive accuracy.

Across all models, the detailed dataset consistently outperformed the limited dataset. This
underscores the value of retaining and imputing metadata fields rather than discarding them. In
linear regression, dropping variables with high p-values improved interpretability without sacrificing
much accuracy. In ensemble models, feature richness substantially improved predictive power.

While both Random Forest and XGBoost outperformed linear regression, Random Forest
achieved the best trade-off between accuracy and stability, which matched the conclusion of
Derdouri and Murayama who conducted similar research toward land price targeting Fukuoka
prefecture, agreeing that Random Forest had the overall superiority [10]. The inclusion of variables
like Structure, Direction, and CityPlanning contributed meaningful variance explanation, especially
in the presence of nonlinear interactions.

Importantly, the split between the detailed and limited datasets allows for a practical implication:
when only limited metadata is available, performance suffers, but meaningful modeling is still
feasible. However, when richer information is retained—even with modest imputation—more
accurate and interpretable models emerge. This suggests that future real estate data collection efforts
should prioritize comprehensive metadata capture, even at the expense of full completeness.

In summary, the combined use of EDA, clustering, and layered modeling allowed us to uncover
distinct price-driving factors in Tokyo’s real estate market. The structured comparison between the
detailed and limited subsets, supported by diagnostics and performance evaluation, offers a
replicable template for urban modeling in other regions or datasets.

This study investigates the determinants of real estate prices in Tokyo by combining exploratory
data analysis, unsupervised clustering, and predictive modeling. Drawing on multi-year transaction
data from the MLIT, the analysis compared a detailed and a limited subset to evaluate how variable
richness and data completeness affect model performance and interpretability. Results consistently
favored the detailed dataset. Although the limited subset facilitated cleaner modeling due to fewer
missing values, it omitted key attributes—such as Structure, Direction, and TotalFloorArea—that
proved critical for explanatory and predictive tasks. With suitable imputation and feature
engineering, the detailed subset enabled a more nuanced understanding of pricing dynamics.
Unsupervised clustering revealed distinct market segments, such as high-end central units and
peripheral low-cost dwellings, which mirrored known socio-spatial divisions in Tokyo. Predictive
modeling showed that while linear regression offered baseline interpretability, ensemble methods—
particularly Random Forest—substantially improved accuracy, reducing RMSE by nearly 90%.
These gains were enhanced through thoughtful feature inclusion and iterative model refinement.
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The study highlights the value of preserving rich metadata, even if partially missing, and
demonstrates a scalable framework for urban housing analysis that balances interpretability and
predictive strength. The comparison between limited and detailed datasets also underscores the
trade-offs data providers and analysts must consider in real-world modeling scenarios. Nonetheless,
this research is limited in scope to the Tokyo metropolitan area. Future work could apply the same
methodology to other Japanese cities to assess generalizability, incorporate spatial autocorrelation,
or integrate time-series and hierarchical models to improve both granularity and inference.
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