Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

GPU Computing Resource Allocation and Prediction Based
on Machine Learning Algorithms

Liao Hu

University of Illinois at Chicago, Chicago, USA
lhu23 1(@my.trine.edu

This article proposes the BIGRU algorithm optimized by Transformer, providing a
more reliable technical path for the fine-grained allocation of GPU computing resources in
deep learning models. In the study, ExtraTrees, CatBoost, XGBoost, and LightGBM were
selected as comparison models. The results showed that the proposed Transformer BiGRU
model performed the best in deep learning GPU resource regression prediction. Among
them, the MSE of this model is 2.208, significantly lower than ExtraTrees' 4.414, CatBoost's
6.71, XGBoost's 4.464, and LightGBM's 2.942; The RMSE is 1.486, which is lower than the
2.101, 2.59, 2.113, and 1.715 of other models; MAE is at its lowest level at 0.969, which is
better than XGBoost's 1.442 and LightGBM's 1.296; MAPE is 26.938, which is lower than
ExtraTrees' 34.478, CatBoost's 37.379, and XGBoost's 36.679; R 2 reaches 0.855, higher
than LightGBM's 0.803 and XGBoost's 0.69. This indicates that the model has smaller
prediction errors and better fitting effects on GPU resources. Its research value lies in laying
an important foundation for improving the accuracy and scientificity of GPU computing
resource allocation, and has a positive significance in promoting the efficient utilization of
resources in the field of deep learning.

Transformer, BIGRU algorithm, GPU computing resource prediction.

With the rapid development of large-scale model training and industrial intelligence, the global
demand for computing power is showing explosive growth [1]. The parameter scale of large models
represented by GPT series, LLaMA, etc. has jumped from tens of billions to trillions, and the GPU
time required for a single round of training can reach millions of hours. In industrial scenarios such
as intelligent manufacturing and autonomous driving, the dynamic demand for computing power for
real-time inference tasks presents high-frequency wave characteristics [2]. As the core carrier of
deep learning computing power, the allocation efficiency of GPU resources directly restricts the
process of technology implementation. Under the current static allocation mode, GPU utilization is
generally below 30%, and in some scenarios, there is even a contradiction between "idle computing
power" and "task queuing", which not only causes a great waste of hardware resources, but also
prolongs the model training cycle by more than 30% and increases energy consumption costs by
about 40% [3]. The mismatch between computing power supply and demand has become a core

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

79

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

bottleneck restricting the large-scale application of Al technology, and there is an urgent need to
achieve dynamic optimization of resource allocation through intelligent means.

Machine learning algorithms provide key technical support for solving the problem of GPU
computing power allocation. Traditional rule-based allocation strategies are difficult to capture the
nonlinear characteristics of computing power demand, while machine learning models can construct
a mapping relationship between computing power demand and task attributes through deep mining
of historical task data (such as model type, batch size, iteration times, hardware load, etc.). For
example, the random forest algorithm can identify key factors that affect computing power demand
through feature importance assessment, while the LSTM model can capture temporal dependencies
during task execution and achieve short-term computing power fluctuation prediction [4]. The
application of these algorithms shifts resource allocation from "experience driven" to "data-driven",
which can increase GPU utilization to over 60% and shorten training cycles by 20% -50% in typical
scenarios. Through real-time prediction of computing power demand curves of different tasks, the
system can schedule resources in advance, avoid computing power redundancy or gaps, provide
accurate decision-making basis for dynamic allocation, and reduce the probability of task blocking
caused by resource contention [5].

Although existing machine learning algorithms have achieved certain results in computing power
prediction, there is still a problem of insufficient prediction accuracy in the face of long-term
dependencies and sudden demands in complex scenarios. The LSTM model exhibits significant
memory decay on long sequence data, with prediction errors exceeding 25% in multi task concurrent
scenarios; Traditional temporal models are difficult to effectively extract the global correlation
between task features and computing power requirements [6]. To this end, this article proposes a
Transformer optimized BiGRU algorithm, which enhances the ability to capture long-range
dependencies between task attributes and computing power requirements by introducing the self
attention mechanism of Transformer. At the same time, the bidirectional recursive structure of
BiGRU is utilized to improve the efficiency of extracting local temporal features. This fusion
architecture not only retains the sensitivity of temporal models to dynamic changes, but also has the
ability to model global features, providing a more reliable technical path for achieving fine-grained
allocation of GPU computing resources.

This dataset contains 517 rows and 12 columns of data, with a total of 12 features. Some of the
content of the dataset is shown in Table 1. This dataset is related to the GPU computing power
requirements of deep learning models. The data covers information such as model type, model
parameter size (in millions), batch size, input dimension, number of layers, iteration count, accuracy,
optimizer type, whether regularization is used, whether data augmentation is used, learning rate, and
GPU requirements (in gflops). The model types include RNN, CNN, ResNet, Transformer, etc., with
accuracies of FP16, FP32, and optimizers including Adam, AdamW, RMSprop, etc. These data can
be used to construct machine learning regression models to predict the computing power
requirements of GPUs, in order to support related research and applications such as GPU computing
resource allocation for deep learning tasks.

80

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

Table 1. Selected partial dataset

. Gpu
Model type Para.m.eters B'c.‘tCh . Inqu Num Iterations Precision Optimizer Learning demand
million size dimension layers rate
gflops
RNN 29.89 1472 409 13 124.83 FP16 Adam 0.002335 1.89762
CNN 17.98 201 619 39 150.33 FP32 AdamW 0.008076 1.88104
ResNet 33.72 854 630 15 336.83 FP32 AdamW 0.0006 9.89094
Transformer 67.93 722 660 29 231.84 FP32 RMSprop 0.008989 10
Transformer 16.65 1423 905 29 1608.08 FP16 Adam 0.006511 10

3. Method

3.1. Transformer

Transformer is a sequence modeling architecture based on self attention mechanism, and its core
breakthrough lies in breaking away from the sequence dependency of models such as RNN and
achieving parallel processing. Its structure consists of an encoder and a decoder: the encoder
receives an input sequence and converts it into context aware feature vectors through N stacked
encoding layers; The decoder generates the final output based on the encoder output and its own
generated sequence [7]. The network structure of Transformer is shown in Figure 1.

Attention
matrix multiply
Q-KT
softmax()
Vdy,
Key(K) Value(V)
Query(Q)
Key Linear Query Linear Neural Value Linear Neural
Neural Network Network Network

[Input embeddings matrix

Figure 1. The network structure of Transformer

Each encoding layer includes a multi head self attention mechanism and a feedforward neural
network: multi head self attention maps the input to multiple sets of query (Q), key (K), and value
(V) matrices, calculates the correlation weights of tokens at different positions, and then

81

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

concatenates multiple sets of results to capture multidimensional dependencies; The feedforward
network independently performs linear transformations and nonlinear activations on each token. The
decoding layer additionally includes encoder decoder attention, allowing the generation process to
focus on key information of the input sequence. To preserve sequence order, Transformer introduces
positional encoding, injecting positional information into tokens at different positions through sine
and cosine functions, solving the problem of self attention being insensitive to order. Compared to
the serial mode of RNN word by word processing, Transformer can parallel compute the attention of
the entire sequence, greatly improving training efficiency. This architecture, with its ability to
capture long-range dependencies and parallelism, has become the foundation of pre trained models
such as BERT and GPT, reshaping the technical paradigm of NLP and even multimodal tasks [8].

The core foundation of BiGRU is GRU, which stands for Gated Recurrent Unit. The network
structure of BiGRU is shown in Figure 2. GRU is designed to solve the problem of gradient
vanishing or exploding in traditional recurrent neural networks when processing long sequences. Its
key lies in flexibly controlling the transmission and forgetting of information through gating
mechanisms. Among them, the reset gate is used to determine whether to ignore historical
information. When the reset gate value is low, the model will pay more attention to the current input;
The update gate determines how much historical information is retained and how much new
information is included, similar to the memory update mechanism [9]. This design enables GRU to
effectively capture long-term dependencies in sequences, while simplifying the structure of recurrent
neural networks and reducing the number of parameters. BiGRU introduces a bidirectional
mechanism based on GRU, consisting of two GRUs with opposite directions. A GRU processes data
in the original sequence from left to right, capturing information from the past to the present; The
other is processed in reverse order from right to left, capturing information from the future to the
present. In each processing step, two GRUs will generate corresponding outputs separately, and then
combine the results of the two through concatenation or fusion to form a comprehensive feature
containing bidirectional context. This bidirectional design allows the model to simultaneously utilize
all the information before and after a certain position in the sequence, breaking through the
limitation of one-way models that can only rely on historical information [10].

Vi <— FC

0

hl-T+I h/—T+2 h,
y > ; T)
GRU GRU -~ <«—— GRU
GRU

A

X

GRU GRU —— -
f

1

Xi-r+1 Xi-1+2

Figure 2. The network structure of BIGRU

82

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

The advantage of BiGRU lies in balancing the comprehensiveness of information capture with
computational efficiency. Compared to unidirectional GRU, it can more accurately understand
contextual information, and compared to more complex bidirectional LSTM structures, it has fewer
parameters and faster training speed, making it more practical in resource limited scenarios.

The principle of optimizing BiGRU with Transformer is mainly based on compensating for the
inherent shortcomings of BiGRU in long sequence modeling and parallel computing, while retaining
its local temporal perception advantages. As a bidirectional gated recurrent unit, BIGRU captures
sequence dependencies through forward and backward hidden layers. However, the dependency
loop structure requires computation to be performed sequentially in time steps, resulting in poor
parallelism and low training efficiency. Additionally, information decay is prone to occur in long
sequences, making it difficult to model long-range distance correlations. Transformer breaks this
limitation through its self attention mechanism: its core self attention module can directly calculate
the associated weights of any two positions in the sequence, and process all temporal positions in
parallel through matrix operations, effectively capturing global dependencies and solving the
problem of long-distance information loss; The multi head attention mechanism further maps
features to multiple subspaces, learns association patterns from different scales, and enriches the
dimensionality of feature representation.

In optimization practice, this article adopts a hybrid architecture: BiGRU is used to process local
short-term temporal features, and the output is used as the input of the Transformer. The global
dependencies are modeled through the self attention layer of the Transformer, while residual
connections and layer normalization are combined to enhance training stability. This not only
preserves BiGRU's sensitive capture of local context, but also utilizes the global modeling capability
and parallel efficiency of the Transformer to improve overall sequence modeling performance.

In terms of experimental parameters, the dataset is divided into training and testing sets in a 7:3
ratio, and the input feature dimension is determined by the number of features in the dataset (output
dimension is 1). The model includes a sequence input layer (with the number of channels equal to
the number of features), a position embedding layer (with a maximum position encoding of 512), 2
self attention layers (4 heads, 32 key channels per head), a forward GRU layer (6 units), a reverse
GRU layer (10 units, input after flipping the data by FlipLayer), as well as ReLU activation layer,
0.01 dropout layer, fully connected layer (output dimension 1), and regression layer. The training
uses Adam optimizer with a maximum round size of 200, batch size of 256, initial learning rate of
0.01 (reduced to 0.001 after 80 rounds), L2 regularization coefficient of 0.001, and gradient clipping
threshold of 10,. In terms of software and hardware configuration, the software relies on MATLAB
and its deep learning toolbox. The hardware is equipped with NVIDIA GPU that supports CUDA to
accelerate training, and the CPU is a multi-core processor. The specific parameter settings are shown
in Table 2.

83

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

Table 2. The specific parameter settings

Aameter Type

Specific Parameters

Dataset split
Input/Output dims
Position encoding

Self-attention layers

70% training, 30% testing
Input dim determined by dataset, output dim 1
Max position encoding 512

2 layers, 4 heads, 32 key channels per head

GRU layers 6 forward units, 10 backward units
Other layers ReLU activation, dropout rate 0.01
Optimizer Adam
Training epochs Max 200 epochs
Batch size 256
Learning rate Initial 0.01, 0.001 after 80 epochs
Regularization L2 coefficient 0.001
Gradient clipping Threshold 10

In terms of comparative models, this article selects ExtraTrees, CatBoost, XGBoost, and
LightGBM. In terms of model evaluation parameters, this article selects MSE, RMSE, MAE,
MAPE, and R2.

Firstly, output the comparative results of ExtraTrees, CatBoost, XGBoost, LightGBM, and the
proposed Transformer BiGRU on deep learning GPU computing power prediction tasks. The bar
chart comparing the indicators of ExtraTrees, CatBoost, XGBoost, LightGBM, and Transformer
BiGRU is shown in Figure 3, and the specific comparison results of the indicators are shown in
Table 3.

Table 3. The specific comparison results of the indicators

Model MSE RMSE MAE MAPE R?
ExtraTrees 4.414 2.101 1.654 34.478 0.68
CatBoost 6.71 2.59 2.142 37.379 0.568
XGBoost 4.464 2.113 1.442 36.679 0.69
LightGBM 2.942 1.715 1.296 432.656 0.803

Transformer-BiGRU 2.208 1.486 0.969 26.938 0.855

84

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

Comparison of Performance Metrics Across Models

- MSE

300

4
w
&
<
=
3
2
100
1
0 0
@\gcos‘ Y\GBQOS‘-

g™ mer-B‘Gw

Value (MSE, RMSE, MAE, R2)

es
xra V(e
& ransfo"

Model

Figure 3. The bar chart comparing the indicators of ExtraTrees, CatBoost, XGBoost, LightGBM,
and Transformer BiIGRU

From various evaluation indicators, the Transformer BiGRU model proposed in this article
performs the best in deep learning GPU resource regression prediction. Its MSE is 2.208,
significantly lower than ExtraTrees' 4.414, CatBoost's 6.71, XGBoost's 4.464, and LightGBM's
2.942; The RMSE is 1.486, which is lower than the 2.101, 2.59, 2.113, and 1.715 of other models;
MAE is at its lowest level at 0.969, which is better than XGBoost's 1.442 and LightGBM's 1.296;
MAPE is 26.938, which is lower than ExtraTrees' 34.478, CatBoost's 37.379, and XGBoost's
36.679; The R 2 reached 0.855, higher than LightGBM's 0.803 and XGBoost's 0.69, indicating that
the model has smaller prediction errors for GPU resources and better fitting effects.

Output the predicted actual value curve of the Transformer BiGRU test set, as shown in Figure 4.
From the predicted actual value curve, it can be seen that Transformer BiGRU's predicted values for
deep learning GPU resources are very close to the actual values, which proves the predictive
performance of the model.

Comparison of Predicted vs Actual Values

>
<

]

e ————
i
B ———]
————)
et

Value

p——

[——

.
P
g

ey

60 80 100 120 140 160
Sample Index

°
s
5
&

Figure 4. The predicted actual value curve of the Transformer BiGRU test set

The Transformer optimized BiGRU algorithm proposed in this article lays a solid technical
foundation for the precise allocation of GPU computing resources in deep learning models. Through
comparative experiments with ExtraTrees, CatBoost, XGBoost, and LightGBM models, it can be
seen that the Transformer BiGRU model exhibits the best performance in deep learning GPU
resource regression prediction tasks. Specifically, its mean square error (MSE) is 2.208, significantly
lower than ExtraTrees' 4.414, CatBoost's 6.71, XGBoost's 4.464, and LightGBM's 2.942; The root
mean square error (RMSE) is 1.486, which is better than the 2.101, 2.59, 2.113, and 1.715 of other

85

Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26376

models; The Mean Absolute Error (MAE) is at its lowest level at 0.969, ahead of XGBoost's 1.442
and LightGBM's 1.296; The mean absolute percentage error (MAPE) is 26.938, which is less than
34478 for ExtraTrees, 37.379 for CatBoost, and 36.679 for XGBoost; The coefficient of
determination (R ?) reaches 0.855, higher than LightGBM's 0.803 and XGBoost's 0.69. These data
fully demonstrate that the model has a smaller prediction error for GPU resources and a better fitting
effect with actual data.

The significance of this research achievement lies in the fact that the Transformer BiGRU model
not only provides an efficient solution for accurate prediction of GPU computing power resources in
deep learning scenarios, but also lays a key foundation for dynamic scheduling and refined
allocation of GPU resources by improving the accuracy of resource prediction. It helps to reduce the
waste of computing power resources, improve resource utilization efficiency, and provide more solid
computing power support for the large-scale application of deep learning technology in various
industries.

References

[1] Li, Ming, et al. "Deep learning and machine learning with gpgpu and cuda: Unlocking the power of parallel
computing." arxiv preprint arxiv: 2410.05686 (2024).

[2] Wu, Gene, et al. "GPGPU performance and power estimation using machine learning." 2015 IEEE 21st
international symposium on high performance computer architecture (HPCA). IEEE, 2015.

[3] Lin, Yiyu, et al. "GPU-Optimized Image Processing and Generation Based on Deep Learning and Computer
Vision." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 5.1 (2024): 39-49.

[4] Dhanasekaran, S., et al. "Utilizing cloud computing for distributed training of deep learning models." 2024 Second
International Conference on Data Science and Information System (ICDSIS). IEEE, 2024.

[5] Shank, Daniel B., et al. "Al composer bias: Listeners like music less when they think it was composed by an
AL" Journal of Experimental Psychology: Applied 29.3 (2023): 676.

[6] Yang, Tiancheng, and Shah Nazir. "A comprehensive overview of Al-enabled music classification and its influence
in games." Soft Computing 26.16 (2022): 7679-7693.

[7] Tchemeube, Renaud Bougueng, et al. "Evaluating human-Al interaction via usability, user experience and
acceptance measures for MMM-c: A creative Al system for music composition." arXiv preprint arXiv: 2504.14071
(2025).

[8] Qiusi, Mao. "Research on the improvement method of music education level under the background of Al
technology." Mobile information systems 2022.1 (2022): 7616619.

[9] El Ardeliya, Vina, Joshua Taylor, and Julia Wolfson. "Exploration of artificial intelligence in creative fields:
Generative art, music, and design." International Journal of Cyber and IT Service Management 4.1 (2024): 40-46.

[10] Zhao, Hanbing, et al. "Al-driven music composition: Melody generation using Recurrent Neural Networks and
Variational Autoencoders." Alexandria Engineering Journal 120 (2025): 258-270.

86

