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Cross-chain payment networks now route substantial value across heterogeneous
ledgers, yet their tightly coupled liquidity corridors create paths along which stress can
propagate within a few blocks. This paper presents a real-time monitoring framework that
transforms block-synchronous transfers into dynamic graphs and applies a latency-optimized
temporal graph attention model to estimate node-level distress and a normalized systemic
risk index per block. Using a six-month public bridge archive and an agent-based simulator
with exploit-driven drains, staged liquidity migrations, and oracle drift, we benchmark
against temporal graph convolution, vector autoregression, and a multilayer perceptron over
graph summaries. The proposed approach achieves higher discrimination and calibration,
longer early-warning lead time, and sub-second inference on commodity CPUs. We quantify
throughput-latency trade-offs of block-aligned analytics, show that sparsified temporal
attention improves robustness to microstructure noise, and demonstrate operational
playbooks, rate limiting and corridor throttling, triggered by index thresholds. The results
support supervisory dashboards, exchange risk controls, and bridge operator circuit breakers,
enabling proactive liquidity management before cascades complete settlement.

cross-chain payment networks, systemic risk, real-time monitoring, graph neural
networks, blockchain interoperability

Cross-chain bridges and payment hubs have become critical financial infrastructure, stitching
heterogeneous ledgers into a practical value-routing fabric. Users traverse these corridors to reach
yield, arbitrage mispricings, and access application-specific ecosystems. The benefits are clear,
capital mobility, composability, convenience, but the risks are subtle: micro-liquidity imbalances,
inclusion-delay spikes, and brief oracle drift can propagate through inter-ledger paths and escalate
into system-wide stress within minutes [1]. Because contagion windows track block cadence rather
than daily cycles, traditional stress testing, built around slow topology and ex-post aggregation,
misses the decisive moments when intervention is still cheap [2].

Monitoring faces two challenges. Representationally, a live transfer stream must be turned into
block-sampled graphs that preserve counterparties, value, settlement speed, and routing evolution
under load. Operationally, we must infer, on commodity hardware and sub-second latency, a risk
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signal capturing immediate load and multi-hop propagation so venues can trigger rate limits, throttle
fragile corridors, or adjust collateral before cascades harden.

We address these with a block-synchronous pipeline that builds a directed multigraph per block,
attaches features summarizing short-horizon intensity and delay, and applies a temporal graph
attention network with sparsified neighborhoods and residual gating. The model outputs node-level
distress, aggregated into a normalized systemic risk index suitable for supervisory dashboards.
Thresholds tied to historical quantiles trigger playbooks such as temporary outflow throttles or
corridor caps [3].

For realism and control, we pair a large public bridge archive (over ten million transfers across
major chain pairs and assets) with an agent-based simulator injecting stylized shocks: exploit-driven
drains, staged liquidity migration, and oracle drift. We report discrimination (AUROC, AUPRC),
calibration (Brier, expected calibration error), early-warning lead time in blocks and seconds, false
alerts per hour at matched sensitivity, and end-to-end latency and throughput. The method issues
earlier, better-calibrated alerts than strong baselines while meeting sub-second inference targets
without GPUs. The paper follows the uploaded framework: Section 2 reviews related work, Section
3 formalizes representation and index construction, Section 4 details data and training, Section 5
presents results and ablations, and Section 6 concludes.

2. Literature review
2.1. Systemic risk in decentralized finance

Systemic risk in decentralized finance emerges when composability binds balance sheets across
venues. Collateral recycling, synthetic exposure via wrapped assets, and flash liquidity synchronize
positions, while asynchronous finality creates short windows during which adverse flows propagate
faster than participants can re-hedge. Analyses confined to single chains understate risk precisely
when users accelerate cross-chain transfers in volatile markets [4]. A monitoring framework must
therefore be cross-chain, block-synchronous, and sensitive to multi-hop effects.

2.2. Cross-chain payment infrastructures

Cross-chain value transfer typically uses intermediary liquidity hubs, hash time-locked
constructions, optimistic verification layers, or message-passing protocols. These mechanisms
improve user experience but introduce failure modes tied to relayer liveness, verification delay, and
liquidity fragmentation [5]. Under stress, routing adapts endogenously; flexibility that keeps routes
alive can also concentrate flows through fragile bottlenecks. Effective measurement must track
topology and weights at block cadence and normalize exposures by contemporaneous value.

2.3. Graph neural networks for risk analysis

Graph neural networks (GNNs) are well-suited to systems with interdependent nodes and multi-hop
propagation, and their standard pipeline, input graphs — preprocessing — stacked message-passing
layers with residual links — embedding space — task-specific loss—is sketched in Figure 1. Static
GNN s capture structure but miss rapid temporal regimes; temporal variants are needed to distinguish
transient bursts from structural change [6]. Attention helps identify which neighbors and time lags
matter, but real-time deployment requires sparsified computation and quantized weights to achieve
sub-second latency on CPUs.
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Figure 1. General architecture of graph neural network
3. Methodology
3.1. Network representation and streaming ingestion

Each block induces a directed multigraph whose vertices are chain—address tuples and whose edges
represent transfers observed within the block. On-chain transactions are ingested via WebSockets,
deduplicated by transaction hash, and aligned by block height. Off-chain price snapshots (mid
quotes) normalize edge values to a common currency so that exposures are comparable across assets
and chains. Node features summarize recent activity over a rolling window of 64 blocks: rolling
in/out degree, approximate betweenness via sparsified power iteration, realized slippage (execution
price vs. contemporaneous mid), and queue-time anomalies (submission-to-inclusion delay vs.
chain-pair baseline) [7]. Edge features include native amount, normalized value at execution, fee
paid, and inclusion delay. The representation is append-only and supports constant-time integration
as blocks arrive.

3.2. Temporal attention with residual gating

A temporal graph attention network encodes short-horizon dynamics and current topology. Attention
coefficients incorporate timing gaps to emphasize neighbors whose recent interactions predict near-
future stress, while residual gating stabilizes hidden states when neighborhoods are volatile.
Attention is sparsified by retaining only the top-scoring neighbors, sharply reducing latency and
suppressing noise from weak links. The layer update used throughout this paper is expressed in
Equation (1):

¢ ¢ - —
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3.3. Systemic risk index

The model outputs node-level distress probabilities that estimate the likelihood a vertex becomes a
source or conduit of stress over the next few blocks [8]. These scores are propagated through value-
normalized edges to produce a single, normalized systemic risk index per block. Propagation is
truncated at shallow depth to capture short contagion paths without overcounting diffuse routes;
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rescaling maps the index to the unit interval for dashboard thresholds. The aggregation is given by
Equation (2):

k
Ro= 417 (S8 (W) ) € [0,1] 2)
4. Experimental setup

4.1. Datasets and stress scenarios

We evaluate on two complementary sources. First, a six-month public bridge archive comprises
10,512,936 transfers across 13,122 block snapshots, covering 17 chain pairs and 42 assets. Median
block cadence is 3.0 s. The USD-normalized transfer distribution is heavy-tailed: median 2,147,
95th percentile 58,204, with a Pareto tail fit (shape = 1.37) on the top decile by maximum
likelihood. End-to-end inclusion delay is multimodal across chain pairs: median 7.2 s, interquartile
range 3.1-12.8 s, 99th percentile > 90 s during congestion [9]. Each scenario has 1,000 Monte Carlo
runs; finality lags are uniformly sampled 220 blocks; order-flow arrivals follow Hawkes processes
calibrated to observed bursts (see table 1).

Table 1. Datasets and stress scenarios used for evaluation

Temporal
Component Duration / Size Topology Scope  Granularit Key Statistics
y

Public 6 months; 10,512,936 17 chain pairs; 42 Median Median transfer 2,147 USD; p95 58,204
bridge transfers; 13,122 block assets; >1.2M active 3.0 sper USD; latency median 7.2 s (IQR 3.1-12.8 s);

archive snapshots addresses block Pareto tail shape ~ 1.37
Simulator . Liquidity nodes — Block- 20 gir removal 30% + 7% within 120 + 35
S1 (exploit 1,000 runs x 10 min  tagged; same scope synchrono .
. . s; finality lag 614 blocks
drains) as archive us
Simulator Block-

Market-maker hubs; Inventory re-route 20—35% over 15 min;

. 52 . 1,000 runs x 30 min alternate routes synchrono betweenness Gini 0.41 — 0.57
(migration) us
S ;nzuiat(ir 1.000 runs x 10 min Price oracles as ]1311(1)1(;1(;1 Drift 40 bps for 12.7 + 2.6 blocks; correction
dr(z f?)C ¢ LUU TURS features R4 Cus ono within 22.1 + 4.0 blocks

4.2. Training protocol, runtime, and baselines

Training uses rolling windows of 64 blocks with stride 8 and a chronological 70/15/15
train/validation/test split. Optimization uses AdamW (weight decay 1e-4) with a triangular learning-
rate schedule cycling le-5 < 3e-4. Bayesian search tunes hidden dimension, attention heads,
dropout, top-K neighbor cap, and propagation depth Kp. Early stopping monitors a smoothed
validation Brier score. We quantize weights to 8-bit and run inference in WebAssembly to satisfy
latency targets.

Baselines: (i) temporal graph convolution with identical windows and features; (ii) vector
autoregression on chain-pair aggregates; (iii) multilayer perceptron over per-block graph statistics
(degree moments, assortativity, max-flow proxies).
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5. Results and discussion
5.1. Predictive accuracy, calibration, and latency

Across five non-overlapping temporal folds on the public archive, the proposed method attains
AUROC 0.943+0.006 and AUPRC 0.7124+0.014. The temporal graph convolution baseline reaches
0.903+0.008 and 0.614+0.018; vector autoregression reaches 0.741+0.012 and 0.402+0.021; the
multilayer perceptron reaches 0.804+0.010 and 0.4634+0.017. Brier score improves from
0.138+0.003 (temporal graph convolution) to 0.112+0.002; expected calibration error falls from
0.042+0.004 to 0.019+0.003 with ten equal-mass bins. Stratifying by corridor shows the largest
absolute AUPRC gain (= 0.13) on routes with long-tailed inclusion delays, consistent with the
temporal weighting in Equation (1). The temporal graph convolution requires 1.41 s median (p95
2.09 s). Vector autoregression is fast (0.18 s) but less robust (Sections 5.2-5.3). Sustained
throughput is 2.1 blocks/s with quantized WebAssembly; a float32 backend is ~4x slower at equal
accuracy [10].

5.2. Early-warning lead time and case studies

Exploit-driven drains (S1). In 1,000 runs with 30%+7% liquidity removed within 1204+35s, the risk
index rises by 0.82+0.05 within two blocks of exploit initiation and peaks at 0.91+0.03 after six
blocks. The first significant uptick precedes realized slippage by 12.4+2.1 blocks (= 37.2+£6.3 s). A
simulated outflow throttle of 10% for 60 s after alert reduces breaches of a critical threshold Rt=0.85
by 2.7x relative to no throttle.

Staged liquidity migration (S2). Re-routing 20-35% inventory over 15 min increases
betweenness Gini from 0.41 to 0.57. The index trends linearly with slope +0.0063+0.0007 per block
across 300 blocks. Time to cross an operational threshold Rt=0.65 averages 210+£34 s; mild 8-12%
rate limiting during the rise keeps Rt<0.65 in 81% of runs without materially depressing post-
migration throughput. Attention patterns shift toward the newly dominant corridors roughly three
blocks before standard centrality metrics reflect the change.

Oracle drift (S3). With 40 bps mispricing sustained for 12.7£2.6 blocks, the index increases
modestly by 0.18+0.04 and reverts within 22.1+4.0 blocks after correction. Vector autoregression
overshoots (peak +0.36+0.11) and takes >40 blocks to return to baseline, producing ~10x more false
alerts per hour at matched sensitivity.

5.3. Ablations, sensitivity, and robustness

Removing attention (retaining message passing) reduces AUROC by 0.106+0.012 and increases
Brier by 0.017], confirming the value of time-aware weighting. Dropping edge features increases
expected calibration error by 0.011, driven by overconfidence on low-value corridors. De-quantizing
weights to float32 increases median latency by 2.6x with negligible accuracy change (AAUROC =
+0.003), validating 8-bit inference for production. Injecting £20% perturbations into edge values for
10% of transfers keeps index variance within +0.03; Kendall’s t between perturbed and unperturbed
Rtexceeds 0.90+0.02.

Adversarial reordering. Reordering edges within blocks (MEV-like effects) reduces AUROC
modestly to 0.917+0.007; median latency stays < 0.45 s.
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6. Conclusion and future work

We introduced a block-synchronous framework for real-time systemic-risk monitoring in cross-
chain payment networks. By constructing per-block dynamic graphs and applying sparsified
temporal attention with residual gating, the system produces a normalized, actionable risk index that
integrates cleanly into supervisory dashboards and venue playbooks. On a large bridge archive and
in controlled shocks, the framework delivers earlier alerts, better calibration, and sub-second
inference relative to strong baselines. Future work will couple the index with optimal control for
automated mitigation, incorporate mempool features to capture pre-inclusion stress, and extend
simulation realism to include validator behavior and auction dynamics, all while preserving the
latency and robustness required for production deployment.
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