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Abstract.  Electric vehicles (EVs) offer lower noise and zero tailpipe emissions compared to
traditional internal combustion engine (ICE) vehicles. This study quantifies EV adoption across
Washington State using ZIP-code–level data from 2020–2025. Multivariable linear regressions
relate the monthly change in EV share to socioeconomic factors, urbanization, family structure,
and the roll-out of public charging infrastructure. Results indicate that adoption growth is
positively associated with higher per-capita income, higher educational attainment, greater
urbanization, and larger average family size. Proximity to infrastructure matters: the number of
newly built local stations (0–20 miles) is positively associated with adoption growth, whereas a
higher number of newly built distant stations (≥30 miles) correlates negatively, consistent with
rurality and limited access. By providing a comprehensive ZIP-code–level analysis, the study
addresses aggregation bias common in county-level work and reveals localized patterns that
broader geographies can obscure. The findings offer policy-relevant evidence for charger siting
and for targeting incentives.

Keywords:  EV adoption, ZIP-code analysis, charger proximity, per-capita income,
multivariable linear regression

1. Introduction

The urgency of mitigating greenhouse-gas emissions has focused attention on electrified transport.
Transportation accounted for about 28% of U.S. greenhouse-gas emissions in 2022, making it the
largest contributor [1]. Because EVs have zero tailpipe emissions, broader adoption can materially
lower CO₂; global scenarios project savings on the order of hundreds of millions of tons if current
policy pledges are realized [2]. Many governments therefore deploy financial incentives to accelerate
adoption; for example, Germany’s federal program led to a 250% increase in subsidized EV purchases
between 2020 and 2021 and delivered CO₂ savings of roughly 3 million tons [3]. Similar incentive
effects have been documented in China [4].
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Prior work highlights income and charging access as central drivers. Studies report higher adoption
with higher income [5] and emphasize that insufficient public charging can impede market growth [6].
Within King County, Washington, underinvestment in lower-income areas aligns with lower adoption
[7]. Consistent with this literature, the present analysis finds positive correlations between income,
charging-station availability, and EV adoption trends.

A common limitation in the literature is spatial aggregation. Analyses at the state or county level can
mask local heterogeneity; coarser geographies introduce aggregation error relative to more granular
units [8]. ZIP-code–level analysis can therefore reveal patterns that broader unit’s obscure.

This study assembles a 2020–2025 ZIP-code–level dataset for Washington State and estimates
multivariable linear regressions linking EV adoption to urbanization, per-capita personal income,
educational attainment, charger access, and family size. The analysis documents (i) positive
associations with income, education, urbanization, the number of newly built local (0–20 miles)
charging stations, and family size; and (ii) a negative association with the number of newly built distant
(≥30 miles) charging stations, consistent with rurality effects. These results underscore the localized
nature of EV adoption and inform targeted infrastructure and incentive design.

The remainder of the report is organized as follows. Section 2 describes data sources, cleaning,
feature engineering, and merging. Section 3 details model selection, variable screening, and assumption
checks. Section 4 presents conclusions. Section 5 discusses limitations and future directions. Section 6
lists references.

2. Data

2.1. Data acquisition and visualization

All data were harmonized to the ZIP‑code level for Washington State over 2020–2025. Vehicle
registration transactions were obtained from data.wa.gov; ZIP‑code geometry and coordinates from
SimpleMaps; income, population, age, and household characteristics from NHGIS; urban/rural status
from data.census.gov; and public charging‑station information from the U.S. DOE Alternative Fuels
Data Center (AFDC). In total, twelve datasets were assembled, several exceeding 30 million records.
After standardizing identifiers and geographic keys, exploratory data analysis (EDA) guided variable
selection and model design.

Figure 1 illustrates the strong right‑skew in population density, with urban ZIPs anchoring the upper
tail. Figure 2 depicts a clear positive association between population density and the share of EVs
among registered vehicles, especially apparent once urban ZIPs are highlighted. Figure 3 documents a
persistent five‑year uptrend in EV adoption, with urban areas leading as early adopters. Figure 4 maps
the annual rollout of charging stations, showing concentration in urban areas with gradual penetration
into rural regions.

Figure 1. Population density by ZIP centroid with urban/rural background
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Figure 2. Population density vs. EV share among registered vehicles

Figure 3. Monthly share of EV registrations by ZIP

Figure 4. New EV charging stations, urban/rural background (2020–2025)

2.2. Data pre-processing

Data pre‑processing ensured internal consistency, reproducibility, and tractable model size. Procedures
addressed missing data, exclusion rules for outliers and unreliable observations, feature engineering,



Proceedings	of	CONF-CDS	2025	Symposium:	Application	of	Machine	Learning	in	Engineering
DOI:	10.54254/2755-2721/2025.AST26989

46

and final merging.

2.2.1. Handling missing values

One of the primary concerns in any dataset is the presence of missing values, and complete datasets
were required in the regression analysis. To address this issue, missing values were assessed before and
after merging. Prior to merging, ZIPs with extensive missing fields—rare and concentrated in very
sparsely populated areas with multiple unreliable statistics—were removed to avoid undue influence
from noisy observations. After merging, mean imputation was applied to education proportions when
necessary, using the statewide ZIP mean; imputed ZIPs constituted less than 10% of the analytic
sample. This approach preserves coverage while acknowledging a potential attenuation of estimated
effects, discussed in the discussion part.

2.2.2. Outliers and exclusions

EDA (boxplots and scatterplots) revealed a small number of manifest anomalies. To reduce spurious
leverage, observations (ZIPs) were excluded when cumulative registrations over 2020–2025 were
below 1,000, when the EV share exceeded 24.9% (implausible for the period), when average family
size exceeded 10 (indicative of data error), or when the outcome construction (Section 2.2.3) yielded a
non‑significant trend (slope p‑value > 0.05). Thresholds were set ex ante based on distributional
evidence; sensitivity to alternative cutoffs is reported elsewhere.

2.2.3. Feature engineering

Categorical variables were encoded numerically and, where appropriate, regrouped to mitigate
multicollinearity. The outcome variable is the monthly trend in EV share at the ZIP level. For each ZIP  
 , a monthly EV‑share series (EV registrations divided by total registrations) was constructed and the

following OLS was estimated (Eq. Equation 1):

(1)

The slope     (percentage points per month) is retained when statistically significant at    .
Education composition was expressed as ZIP‑level percentages grouped into mid‑low (≤ high

school), mid‑high (high school to some college), and high (≥ college), with the very‑low category
suppressed to limit collinearity. Age composition was expressed as ZIP‑level percentages for the bands
1–20, 21–30, …, 71–80, with ages ≥81 suppressed for the same reason. Urbanization was encoded as a
binary indicator (Urban.Rural = 1 for urban, 0 for rural). Charging‑infrastructure access was measured
as the number of new public charging stations relative to the ZIP centroid in fixed distance bands of 0–
10, 10–20, 20–30, and ≥30 miles (num_0_10, num_10_20, num_20_30, num_30_plus). Distances were
computed as great‑circle distances from ZIP centroids; with fixed radii, counts are directly
interpretable, and density‑based normalizations are examined in robustness checks.

2.2.4. Final analysis dataset

The final merged dataset comprises the following variables: the ZIP identifier; population density
(people per km²); per‑capita personal income (USD); education shares (edu_midlow, edu_midhigh,
edu_high); age‑band shares from 1–20 through 71–80; an urbanization indicator (Urban.Rural, with 1
denoting urban); counts of new charging stations within 0–10, 10–20, 20–30, and ≥30 miles

i

EV Shareit = αi + βit + εit.

βi p ≤ 0.05
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(num_0_10, num_10_20, num_20_30, num_30_plus); average family size (people); and the outcome
slope (percentage‑point change in EV share per month). Table 1 provides concise definitions and units.

Table 1. Variable definitions and units used in the analysis dataset

Variable Description Unit Range

zip US ZIP code (identifier) — 98000–99400
population_density Population density people per km^2 0.2–18200

PCPIE Per-capita personal income USD 15090–129100
edu_midlow Education: middle or lower % of pop. 0.002425–0.2156
edu_midhigh Education: middle–high % of pop. 0.1102–0.8525

edu_high Education: high % of pop. 0.03178–0.8823
age_1_20 Age 1–20 % of pop. 0.01864–0.4503
age_21_30 Age 21–30 % of pop. 0.005293–0.3963
age_31_40 Age 31–40 % of pop. 0.004869–0.3119
age_41_50 Age 41–50 % of pop. 0.02876–0.3495
age_51_60 Age 51–60 % of pop. 0.0199–0.5155
age_61_70 Age 61–70 % of pop. 0.03433–0.399
age_71_80 Age 71–80 % of pop. 0.009093–0.2983

Urban.Rural Urban / rural classification — 0–1
num_0_10 New EV charging stations within 10 miles stations 0–1195
num_10_20 New EV charging stations between 10–20 miles stations 0–1318
num_20_30 New EV charging stations between 20–30 miles stations 0–1185

num_30_plus New EV charging stations ≥30 miles stations 290–2731
family_size Average family size people 1.459–4.417

slope Slope of EV time-series regression pp/month 7.842e-05–0.002535

3. Methods

3.1. Model building

The empirical strategy proceeds from a saturated linear specification to progressively more
parsimonious models, with formal tests at each step. Let the dependent variable be the monthly change
in EV share at the ZIP level (Section 2.2.3). The initial (“full”) model, M1, includes socioeconomic
composition, urbanization, and charging‑access measures:
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Coefficient‑wise inference uses two‑sided     tests of     against    . Guided by
these tests at    , we retain predictors with     to form M2 via backward elimination.

The resulting specification M2 is

(3)

All retained coefficients in M2 are statistically significant at the 5% level. Variance inflation factors
(VIFs) computed on M2 do not exceed 5, so the VIF‑screened model M3 coincides with M2.

To evaluate parsimony against goodness of fit, a deliberately reduced model M4 is constructed by
dropping two predictors from M3 (those with the smallest absolute    ‑statistics). A partial‑     test is
used for the nested comparison of M3 (full) versus M4 (reduced), complemented by information
criteria. The test strongly favors M3(full) specification (P‑value     ); in addition, M3
attains not only higher     (0.8397 vs. 0.8320) and adjusted     (0.8373 vs. 0.8302), but also lower
AIC (−6676.96 vs. −6652.82) and BIC (−6639.55 vs. −6623.72), indicating a superior fit without undue
complexity.

Motivated by exploratory evidence that local charger supply may operate differently in urban
settings, an interaction between urbanization and nearby charging growth is introduced. The
interaction‑augmented model M5 adds     to M3 and is compared to M3 via
a partial‑    test. The improvement in P‑value (   ) is statistically significant, while AIC, BIC,  

 , and adjusted     remain similar in magnitude, supporting inclusion of the interaction. So the final
specification M5 is

(2)

slope = −4.295 × 10−4

+ 7.130 × 10−9 population_density +8.130 × 10−9 PCPIE

+ 7.990 × 10−5 edu_midlow +5.448 × 10−5 edu_midhigh

+ 1.313 × 10−3 edu_high −7.058 × 10−4 age_1_20

− 5.184 × 10−4 age_21_30 +7.083 × 10−4 age_31_40

+ 8.928 × 10−4 age_41_50 +1.854 × 10−4 age_51_60

− 4.113 × 10−4 age_61_70 +8.954 × 10−5 age_71_80

+ 6.657 × 10−5 Urban.Rural +2.628 × 10−7 num_0_10

+ 3.531 × 10−7 num_10_20 +5.221 × 10−8 num_20_30

− 3.780 × 10−8 num_30_plus +1.315 × 10−4 family_size .

t H0 : βj = 0 H1 : βj ≠ 0

α = 0.05 p < 0.05

slope = −2.955 × 10−4 + 9.329 × 10−9PCPIE + 1.230 × 10−3edu_high
+7.901 × 10−5Urban.Rural + 3.045 × 10−7num_0_10 + 3.991 × 10−7num_10_20

−4.794 × 10−8num_30_plus + 7.184 × 10−5family_size .

t F

= 9.824 × 10−7

R2 R2

Urban.Rural × num_0_10
F 0.000742

R2 R2

(4)

slope =   −2.501 × 10−4  +  9.026 × 10−9 PCPIE  +  1.189 × 10−3 edu_high

+ 1.017 × 10−4 Urban.Rural  +  1.190 × 10−6 num_0_10  +  3.688 × 10−7 num_10_20

− 4.892 × 10−8 num_30_plus  +  5.966 × 10−5 family_size

− 8.786 × 10−7  (Urban.Rural × num_0_10) .
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All of the model parameters are concluded in Table 2, with M2 being the same as M3 and M5 being
our final model. Note that:     indicates    ,     indicates    ,     indicates    .* P < 0.1 ** P < 0.05 *** P < 0.01
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Table 2. Model coefficients with p-values

Variable Model_1 Model_3 Model_4 Model_5

(Intercept) -4.295e-04  
(p = 0.423278)

-2.955e-04   
(p = 0.000481)

-4.869e-05  
(p = 0.230178)

-2.501e-04   
(p = 0.003319)

pop_density 7.130e-09  
(p = 0.516168) — — —

PCPIE 8.130e-09   
(p = 5.21e-13)

9.329e-09   
(p < 2e-16)

8.937e-09   
(p = 4.46e-16)

9.026e-09   
(p < 2e-16)

edu_midlow 7.990e-05  
(p = 0.869053) — — —

edu_midhigh 5.448e-05  
(p = 0.812045) — — —

edu_high 1.313e-03   
(p = 2.56e-07)

1.230e-03   
(p < 2e-16)

1.191e-03   
(p < 2e-16)

1.189e-03   
(p < 2e-16)

age_1_20 -7.058e-04  
(p = 0.189066) — — —

age_21_30 -5.184e-04  
(p = 0.322986) — — —

age_31_40 7.083e-04  
(p = 0.201556) — — —

age_41_50 8.928e-04  
(p = 0.114511) — — —

age_51_60 1.854e-04  
(p = 0.722269) — — —

age_61_70 -4.113e-04  
(p = 0.469325) — — —

age_71_80 8.954e-05  
(p = 0.887181) — — —

Urban.Rural 6.657e-05   
(p = 0.004749)

7.901e-05   
(p = 0.000353)

— 1.017e-04   
(p = 1.29e-05)

num_0_10 2.628e-07   
(p = 0.000274)

3.045e-07   
(p = 5.97e-06)

3.740e-07   
(p = 1.99e-08)

1.190e-06   
(p = 0.000112)

num_10_20 3.531e-07   
(p = 6.21e-12)

3.991e-07   
(p = 2.68e-15)

4.425e-07   
(p < 2e-16)

3.688e-07   
(p = 4.24e-13)

num_20_30 5.221e-08  
(p = 0.216048) — — —

num_30_plus -3.780e-08   
(p = 0.009471)

-4.794e-08   
(p = 0.000989)

-5.733e-08   
(p = 0.000102)

-4.892e-08   
(p = 0.000706)

family_size 1.315e-04   
(p = 0.002568)

7.184e-05   
(p = 0.003806)

— 5.966e-05   
(p = 0.016694)

Urban.Rural:num_0_10 — — — -8.786e-07   
(p = 0.003134)

R_squared 0.85 0.8397 0.832 0.8427
adj_Rsquared 0.8441 0.8373 0.8302 0.84

AIC — -6676.959 -6652.816 -6677.992

*** **

*** *** *** ***

*** *** *** ***

** *** ***

*** *** *** ***

*** *** *** ***

** *** *** ***

** ** *

**
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BIC — -6639.546 -6623.717 -6636.423

3.2. Regression diagnostics

Model adequacy is evaluated against standard linear‑model conditions: linearity of the conditional
mean, uncorrelated errors, homoskedastic disturbances, and approximately normal residuals. Plots of
observed responses against fitted values show close alignment with the 45‑degree line, consistent with
an adequate linear signal; deviations are small and unsystematic (Figure 5).

Figure 5. Actual vs. fitted values (linearity of the conditional mean)

Pairwise associations among retained predictors appear roughly linear. Given the visual correlation
between per‑capita income (PCPIE) and the high‑education share, we compute variance inflation
factors (VIFs) to assess multicollinearity. All VIFs are below 5, indicating limited collinearity and no
need to exclude additional predictors (Figure 6).
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Figure 6. Pairwise relationships among predictors (screening for multicollinearity)

Residual‑versus‑fitted diagnostics show residuals centered near zero without pronounced curvature.
A mild fan‑shape at higher fitted values suggests slight heteroskedasticity; to guard against size
distortions in hypothesis tests, we report heteroskedasticity‑consistent (HC3) standard errors alongside
conventional ones (Figure 7).

Figure 7. Residuals vs. fitted (checking linearity and constant variance)

The normal Q–Q plot indicates residuals track the reference line closely with modest tail deviations,
supporting approximate normality and the reliability of large‑sample inference (Figure 8).
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Figure 8. Normal Q–Q plot of residuals (approximate normality)

Outliers, leverage points, and influential observations should be assessed to ensure model reliability.
A data point is considered an outlier if its standardized residual lies outside the range of -4 to 4. A
leverage point is one that is far from the mean of the predictor values and can substantially affect the
fitted regression line. The threshold for leverage is defined as: 2 × (number of predictors + 1) / n,where
n is the sample size.

Influential observations are identified using Cook’s Distance. A data point is considered influential if
its Cook’s Distance exceeds the 50th percentile of the F distribution with degrees of freedom
(p+1,n−p−1), where p is the number of predictors and n is the total number of observations.

By results, most standardized residuals fall within -4 and 4, with only a few potential outliers (e.g.,
observation 84). Cook’s Distance shows most points have low influence, with only a few exceeding the
cutoff. Overall, the model is stable with limited influential cases.

4. Conclusion

This study quantifies ZIP-code–level EV adoption dynamics in Washington State over 2020–2025 by
relating the monthly change in EV share to socioeconomic composition, urbanization, and the roll-out
of public charging infrastructure. Multivariable linear models indicate that higher per-capita income, a
larger share of highly educated residents, and urban status are each positively associated with faster
growth in EV share. Access to charging infrastructure is salient at near distances: growth in the number
of new stations within 0–10 miles and 10–20 miles is positively associated with adoption growth,
whereas a greater concentration of distant stations (≥30 miles) is negatively associated with adoption,
consistent with the distinct constraints of rural geographies. An interaction between urbanization and
nearby station growth shows a weaker marginal association in urban ZIPs than in non-urban ZIPs,
suggesting diminishing returns where baseline access is already high. These results answer the central
questions posed in the Introduction by identifying the principal correlates of adoption and by
demonstrating that spatial granularity at the ZIP level reveals localized patterns that broader
geographies can obscure. Policy implications follow directly: charger siting decisions that prioritize
proximity—particularly in underserved, lower-access areas—are likely to be more effective than
strategies that expand distant infrastructure, and incentives targeted by local socioeconomic profiles
may accelerate uptake where the marginal response is greatest. Overall, the findings provide an
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empirically grounded basis for fine-grained infrastructure planning and for designing geographically
targeted incentives, while also motivating further causal analysis of infrastructure–adoption dynamics.

5. Discussion

Several considerations qualify the interpretation and indicate directions for further work. First, the
outcome is a ZIP-level trend (the slope of monthly EV share), which improves comparability across
places but does not by itself resolve endogeneity between charger deployment and demand.
Infrastructure may be installed preferentially where adoption is already rising, potentially biasing naive
associations upward. Future analyses should therefore incorporate identification strategies—such as
panel fixed effects with time-varying controls, difference-in-differences around exogenous policy
shocks, or instrumental variables exploiting program eligibility rules or grid siting constraints—to
sharpen causal interpretation.

Second, the construction of the analytic dataset necessarily involved handling missing data and
excluding manifest anomalies. Mean imputation for education shares was applied to fewer than ten
percent of ZIPs to preserve coverage. This approach preserves coverage while acknowledging a
potential attenuation of estimated effects, because mean imputation can shrink cross-sectional variance
and bias coefficients toward zero; reporting heteroskedasticity- consistent standard errors (HC3) and
comparing results to complete-case estimates partly mitigates concerns but does not eliminate them.
Relatedly, exclusion thresholds—minimum cumulative registrations, extreme EV shares, implausible
family sizes, and non-significant outcome trends—were set ex ante based on distributional evidence;
sensitivity to alternative cutoffs is reported elsewhere and leaves the principal findings intact.
Nonetheless, replication with alternative outlier rules and multiple-imputation procedures would further
validate robustness.

Third, spatial structure may matter. Although fixed-radius counts of new stations offer transparent
interpretation, spatial spillovers and network effects can induce dependence across neighboring ZIPs.
Extensions using spatial error or spatial lag specifications, geographically weighted regression, or
gravity-based accessibility indices could capture these interactions more explicitly. Likewise, aligning
supply with potential demand via per-capita or per-vehicle accessibility, and distinguishing rapid-
charging from lower-power stations, may refine effect heterogeneity. The documented weaker marginal
association of nearby station growth in urban areas suggests diminishing returns in already dense
networks; modeling nonlinearity (e.g., spline terms for charger access) would test this mechanism
directly.

Finally, measurement and scope limitations remain. Registration and station inventories may contain
dating or classification errors; charger operability and reliability are not observed; and important
covariates—such as local electricity prices, parking availability, housing type, or model availability—
are not yet integrated. Incorporating these factors, expanding beyond one state, and exploiting policy
discontinuities would strengthen external validity and causal claims. Taken together, the present results
underscore the importance of proximity-based infrastructure for accelerating adoption while
highlighting methodological avenues—causal identification, richer spatial modeling, and improved
data—to advance the evidence base.
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