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Abstract.  Pólya’s Enumeration Theorem, or PET, is a sine qua non tool in combinatorial
mathematics for solving counting problems that involve symmetry. This paper provides a
comprehensive review of the theorem and its related theories. We begin by establishing the
necessary group-theoretic foundations, followed by rigorous proofs of the "Orbit-Stabilizer
Theorem" and "Burnside’s Lemma". The core of the paper is a detailed analysis of PET,
including complete proofs for its unweighted and weighted forms, demonstrating how the
cycle index allows for detailed pattern enumeration. The theorem’s broad utility is illustrated
through classic applications in chemistry (isomer counting), graph theory (non-isomorphic
graph counting), and music theory. Furthermore, we explore key modern generalizations of
PET, including de Bruijn’s theorem on dual group actions, Rota’s lattice-theoretic
formulation, and Fujita’s stereochemical method for complex molecular structures. The
paper concludes by positioning the Theory of Combinatorial Species as a potential unifying
framework for future research in enumeration theory.
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1. Introduction

Combinatorial counting is a fundamental branch of mathematics, with its core task being to answer
the question, "How many possibilities are there?" However, when the objects being counted possess
some form of symmetry, the problem becomes exceedingly complex. For instance, for a necklace
with 6 beads to be colored with red and blue, how many "essentially different" patterns are there?
Here, "essentially different" means that if one coloring pattern can be obtained from another by
rotation or flipping, they are considered the same. Similarly, for a cube with its six faces colored
with k colors, how many different coloring methods are there? These problems cannot be solved by
simple permutation and combination formulas because their core lies in how to handle the
equivalence relations caused by "symmetry."

Early explorations of such problems can be traced back to the mid-19th century. The chemist
Arthur Cayley, while studying alkane isomers, encountered the problem of enumerating specific
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types of "tree" structures [1]. This can be seen as an early attempt at enumeration theory in a specific
scientific problem, but its methods were rather specialized and lacked universality. The real
theoretical breakthrough occurred at the end of the 19th century with Burnside’s Lemma (although
its core idea was proposed earlier by Cauchy and Frobenius [2]). As the cornerstone of Pólya's
theory—a primum mobile for modern enumeration—it furnished the first general equation for
counting orbits (or equivalence classes) of a group action.

In 1937, the mathematician George Pólya set forth his opus insigne "Kombinatorische
Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen" [3], which
systematically solved the problem of counting weighted equivalence classes. By introducing the
core tool—the Cycle Index—Pólya not only unified but also greatly generalized previous methods,
forming what we know today as the Pólya Enumeration Theorem (PET).

This study aims to:
1.  Furnish rigorous demonstrations of Burnside’s Lemma and, subsequently, of Pólya’s

Enumeration Theorem, with the latter encompassing both its unweighted and weighted forms.
2.  Demonstrate the breadth and depth of its theoretical applications through examples in

chemistry, graph theory, and music theory.
3.  In-depthly explore the modern theoretical generalizations of Pólya’s theory, especially the

work of de Bruijn, Rota, and Fujita, and analyze the connections and differences between these
generalized theories and the classic PET.

4. Point out future research directions within a more abstract combinatorial framework, such as
the Theory of Combinatorial Species.

2. Foundations in group theory

To rigorously discuss Pólya’s Enumeration Theorem, it’s necessary to first establish some
fundamental concepts of group theory.

2.1. Basic definitions

Definition 2.1 (Group). A group is formally a pair     constituted by a non-empty set     and a
binary operation     . The fact that the codomain of      is      itself establishes the
closure property ex officio. For this pair to be deemed a group, three additional postulates must be
satisfied [4]:

5. Associativity: The operation     is associative; scilicet, for any choice of    , equality  
  holds.

6. Identity Element: There’s identity (or neutral) element    , a sine qua non for the structure,
so that as to every    , we have    .

7.  Inverse Element: Each element      admits an inverse, denoted     , for which  
 .

Within the framework of Pólya’s theory, a group of cardinal importance is the symmetric group  
 . This group comprises permutations sine exceptione (i.e., bijective functions) on finite set    

(first n integers’ set), among which function composition serves as group operation.
Definition 2.2 (Group Action). Let     be a group and     a non-empty set. A (left) group action

means, de jure, a group homomorphism     from     into the symmetric group on    , denoted  
[4]. Id est, an action means map     satisfying     for any  
 .

(G, *) G

* : G × G → G * G

* a, b, c ∈ G

(a*b)*c = a* (b*c)

e ∈ G

a ∈ G e*a = a*e = a

a ∈ G a−1 ∈ G

a*a−1 = a−1*a = e

Sn [n]

G X

Φ G X SX

Φ : G → SX Φ (gh) = Φ (g) ∘ Φ (h) g,h ∈ G
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The mapping     assigns to each group element     a specific permutation on    , which we
may denote     . The action of      on element      is subsequently defined as
evaluation of this permutation:    .

The two customary axioms for a group action follow from this single definition ex necessitate
legis:

8.  Identity Action: A homomorphism maps identity element      to      identity element,
which is dentity permutation. Ergo,    , or    .

9.  Compatibility: The homomorphism property itself, viz.,     , directly
implies compatibility:    .

Prima facie, a group action elucidates the manner in which elements of      systematically
permute      elements. Each group element     , ergo, induces a permutation on      in a fashion
consonant with the group’s intrinsic structure.

Definition 2.3 (Orbit). Under group action      on set     , orbit of element      is set  
[4,2]. It contains all the positions that      can reach under the action of all

elements in    . All orbits shape a partition of set    , meaning any two orbits are either identical or
completely disjoint. An orbit is an equivalence class, and elements within the same orbit are
considered "essentially the same." The core objective of Pólya’s theory is to count orbits’ amount.

Definition 2.4 (Stabilizer). The subset of     comprising all elements whose action leaves a given
point     invariant is denominated its stabilizer,    :   [4,2]. This set
is not merely a subset; it is, de jure, a subgroup of    .

Definition 2.5 (Fixed Point). Regarding to any given     , the collection of points in    
rendered invariant by its action is termed     ’s fixed-point set, and denoted     :  

[4,2].
Remark 2.6 (Difference between Stabilizer and Fixed Point). The distinction between these two

constructs is fundamental, hinging on the universe of discourse. Ceteris paribus, the stabilizer     is
a subset of the group     , populated by all transformations fixing a specific point     . Mutatis
mutandis, the fixed-point set     denotes set    ’s subset, populated by all points left invariant by a
specific transformation    .

2.2. Orbit-stabilizer theorem

Forthcoming theorem quantitatively elucidates nexus between the cardinality of an orbit and that of
its stabilizer.

Theorem 2.7 (Orbit-Stabilizer Theorem). Let finite group     act on set    . As to any    ,
the cardinalities of its orbit      and stabilizer      are related to group order, pari passu, via
following identity:

Proof. The proof rests upon the construction of a bijection, between set of left cosets of stabilizer,
   , and the orbit    . Let us name this map    .

10. Define the map: We propose map     given through rule    . Its
validity, i.e., its well-definedness, must be verified. Assume    . This equality holds si
et seulement si there’s several      so that     . The action on      is then  

Φ g ∈ G X

ϕg := Φ (g) g x ∈ X

g ⋅ x := ϕg (x)

e ∈ G SX

ϕe (x) = x e ⋅ x = x

Φ (gh) = Φ (g) ∘ Φ (h)

(gh) ⋅ x = ϕgh (x) = (ϕg ∘ ϕh) (x) = ϕg (ϕh (x)) = g ⋅ (h ⋅ x)

G

X g X

G X x ∈ X

Ox = {g ⋅ x ∣ g ∈ G} x

G X

G

x ∈ X Gx Gx = {g ∈ G ∣ g ⋅ x = x}

G

g ∈ G X

g X g

X g = {x ∈ X ∣ g ⋅ x = x}

Gx

G x

X g X

g

G X x ∈ X

Ox Gx

|G| = |Ox| ⋅ |Gx|

G/Gx = {gGx ∣ g ∈ G} Ox ϕ

ϕ : G/Gx → Ox ϕ (gGx) = g ⋅ x

g1Gx = g2Gx

h ∈ Gx g1 = g2h x
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 . As    , its action on     is trivial, ergo    . It obeys 
 , confirming map is well-defined.

11.  Injectivity: To establish injectivity, we must show that      implies  
 . Let’s assume the former:    . Applying     action from the left yields

    . By compatibility, this simplifies to     . This
demonstrates, ipso facto, that the element      belongs to stabilizer     . Consequently,  

 , proving     is injective.
12. Subjectivity: For subjectivity, consider an arbitrary element    . By the definition of an

orbit, there must exist some     for which    . For this    , a corresponding coset    
exists a priori in the domain    . Applying our map yields    . Thus, every
element in the codomain has a preimage, and     is surjective.

13.  Conclusion: Having established that      denotes a bijection, it obeys that two sets are
equinumerous:     . Lagrange’s Theorem posits that subgroup index,     , is
given through     . Equating the two expressions for the number of cosets gives  

 . The theorem follows by rearrangement.

3. Core theorems and basic applications

3.1. Burnside’s Lemma

Burnside’s Lemma offers a method for enumerating orbits by relating their count to mean amount of
fixed points and serves as fundamentum for Pólya’s theory of enumeration.

Theorem 3.1 (Burnside’s Lemma) [4]. Consider finite group     's action upon finite set     .
Orbits’s amount, denoted    , is, in fine, arithmetic mean of cardinalities of fixed-point sets  
  over all    :

Proof. proof’s modus operandi is to enumerate the elements of set  
  via two distinct methods. This set contains all pairs     such

that     remains unchanged under the action of    .
14. First Summation (grouping by group element     ): Summing first over      per fixed  

  , the inner sum gives fixed-point set cardinality of     , scilicet     . A subsequent
summation over all     yields the total cardinality.

15. Second Summation (grouping by set element    ): Alternatively, summing first over    
per fixed    , inner sum is precisely stabilizer cardinality of    ,    . Summing then over all  

  yields the same total.

g1 ⋅ x = (g2h) ⋅ x = g2 ⋅ (h ⋅ x) h ∈ Gx x h ⋅ x = x

⋅x = g2 ⋅ x
ϕ (g1Gx) = ϕ (g2Gx)

g1Gx = g2Gx g1 ⋅ x = g2 ⋅ x g−1
2

g−1
2 ⋅ (g1 ⋅ x) = g−1

2 ⋅ (g2 ⋅ x) (g−1
2 g1) ⋅ x = e ⋅ x = x

g−1
2 g1 Gx

g1Gx = g2Gx ϕ

y ∈ Ox

g ∈ G y = g ⋅ x g gGx

G/Gx ϕ (gGx) = g ⋅ x = y

ϕ

ϕ

|G/Gx| = |Ox| |G : Gx|

|G|/ |Gx|

|Ox| = |G|/ |Gx|

G X

|X/G| X g

g ∈ G

|X/G| =
1

|G|
∑
g∈G

|X g|

S = {(g,x) ∈ G × X ∣ g ⋅ x = x} (g,x)

x g

g x ∈ X

g ∈ G g |X g|

g ∈ G

|S| = ∑
g∈G

|{x ∈ X ∣ g ⋅ x = x}| = ∑
g∈G

|X g|

x g ∈ G

x ∈ X x |Gx|

x ∈ X
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16. Establishing the Equality: Equating the results of these two summation methods yields the
pivotal equality:

17.  Introducing the Orbit-Stabilizer Theorem: According to Orbit-Stabilizer Theorem (Theorem
2.1), we have    . Substituting this into the dextral side of the foregoing equality:

18.  Rearranging and Summing by Orbits: Transposing the constant      to the sinistral side
yields:

Now, consider the sum on the right. The set      being partitioned by its orbits allows the sum
over      to be regrouped as a sum over orbits. Let      be all orbits’ set,
where     is orbits’ total number.

For all elements      in the same orbit     , their orbit is      itself, so the value of      is
constant and equal to    . Thus, the inner sum has     terms, each being    .

And     means precisely orbits’ total number, i.e.,    .

|S| = ∑
x∈X

|{g ∈ G ∣ g ⋅ x = x}| = ∑
x∈X

|Gx|

∑
g∈G

|X g| = ∑
x∈X

|Gx|

|Gx| =
|G|

|Ox|

∑
g∈G

|X g| = ∑
x∈X

|G|

|Ox|

|G|

1

|G|
∑
g∈G

|X g| = ∑
x∈X

1

|Ox|

X

X X/G = {O1,O2, . . . ,Ok}

k = |X/G|

∑
x∈X

1

|Ox|
=

k

∑
i=1

∑
x∈Oi

1

|Ox|

x Oi Oi |Ox|

|Oi| |Oi|
1

|Oi|

k

∑
i=1

∑
x∈Oi

1

|Oi|
=

k

∑
i=1

(|Oi| ⋅
1

|Oi|
) =

k

∑
i=1

1 = k

k |X/G|
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19. Conclusion: Collating the preceding chain of equalities yields the final result:

Example 3.2 (2-coloring vertices of a square [2]). Enumerate the distinct 2-colorings of vertices
of a square with colors black and white, modulo rotational equivalence.

•  Set     : All possible coloring schemes. Each vertex has 2 choices, for 4 vertices, so  
 .

•  Group     : The rotational group of the square     , where      is the
identity (rotation by    ), and     are clockwise rotations by    . The order
of the group is    .

We now enumerate, seriatim, the cardinality of the fixed-point set for each group element  
 :

•     (rotation by    ): All 16 colorings remain unchanged.    .
•       (rotation by     ): The vertices are permuted as     . As to

coloring to keep the same level after a      rotation, all four vertices must have the same color.
There are 2 such schemes (all white or all black).    .

•       (rotation by     ): The induced permutation on the vertices is     . A
coloring remains invariant under this action if, and only if, the vertices within each cycle are
monochromatic. This de facto reduces the problem to choosing one color for the pair      and
one for the pair    . With two available colors, this gives     invariant configurations.
Ergo,    .

•       (rotation by     ): The vertices are permuted as     .
Symmetrical to the     case, all four vertices must be the same color.    .

According to Burnside’s Lemma, different coloring schemes’ number is:

So there are 6 essentially different coloring schemes.

|X/G| =
1

|G|
∑
g∈G

|X g|

X

|X| = 24 = 16

G C4 = {e, r90, r180, r270} e

0∘ r90, r180, r270 90∘, 180∘, 270∘

|G| = 4

g ∈ G

g = e 0∘ |X e| = 16

g = r90 90∘ (1 → 2 → 3 → 4 → 1)

90∘

|X r90 | = 2

g = r180 180∘ (1 3) (2 4)

{1, 3}

{2, 4} 2 × 2 = 4

|X r180 | = 4

g = r270 270∘ (1 → 4 → 3 → 2 → 1)

r90 |X r270 | = 2

|X/G| =
1

4
(|X e| + |X r90 | + |X r180 | + |X r270 |) =

1

4
(16 + 2 + 4 + 2) =

24

4
= 6
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Figure 1. The 6 non-equivalent 2-colorings of vertices of a square [2]

3.2. Pólya Enumeration Theorem (PET)

Burnside’s Lemma can only answer "how many" equivalence classes there are, while Pólya’s
Enumeration Theorem can further answer "how many of each type" of equivalence class exist.

3.2.1. Preliminary concepts

• Function Set    : Let     be a finite object set and     a color set. A specific coloring of     is,
de jure, a function    . All such functions’ set is denoted    .

• Induced Group Action: Group    's action upon     gives rise to a corresponding action on the
function set     . For any      and     , the resultant function      is defined via  

  . (This definition constitutes a valid group action as it satisfies identity
axiom,     , and the compatibility axiom,     . The use of      is a
standard convention to ensure it is a left action.)

•  Configuration: Under the induced group action, an orbit in      is called a configuration,
representing a set of essentially identical coloring schemes.

•  Type of a Permutation: Type of permutation      is a vector     , with each
component      enumerating cycles’ number of length      within permutation’s disjoint cycle
factorization.

• Cycle Index: Cycle index of group     acting upon set     of cardinality     means polynomial
in the variables    , given via formula:

• In which,     denotes cyless’ number of length     in the permutation corresponding to the
group element    . This polynomial serves as an algebraic summary of the group’s action, encoding,
in toto, the cycle structure of every element.

Y X X Y X

f : X → Y Y X

G X

Y X g ∈ G f ∈ Y X g ⋅ f

(g ⋅ f) (x) = f (g−1 ⋅ x)

e ⋅ f = f (gh) ⋅ f = g ⋅ (h ⋅ f) g−1

Y X

p (b1, b2, . . . , bn)

bi i

G X n

x1,x2, . . . ,xn

ZG (x1, . . . ,xn) =
1

|G|
∑
g∈G

n

∏
i=1

x
bi(g)
i

bi (g) i

g
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3.2.2. PET unweighted form

Theorem 3.3 (PET, Unweighted Form). A set     is acted by finite group    , with a palette of    
colors available for use. The number of inequivalent colorings (i.e., configurations) is, verbatim, the
evaluation of the cycle index polynomial     at     for all    :

Proof.
20. Burnside’s Lemma posits that     . Herein,      represents

the set of functions (or colorings) rendered invariant by the action of    .
21. Our immediate objective is the enumeration of    . A coloring     qualifies as a

fixed point of     si et seulement si    .
22.  Definition of induced action necessitates that for any     , the equality  

   must hold. Let     , which implies     . The condition
becomes,    , for all    .

23.  This condition implies that for any cycle in the permutation induced by      on     , all
elements within that cycle must have the same color value under the coloring scheme    . In other
words,     must be a constant function on each cycle of    .

24.  Let the cycle decomposition of the permutation corresponding to      have  
  cycles. For each cycle, we can independently choose one color from    . Since

   , there’re     color choices per cycle.
25. Therefore, fixed-point colorings’ total amount is    .
26. Substituting this result into the formula of Burnside’s Lemma:

27. This is precisely the result obtained by substituting      into the definition of the cycle
index    . Therefore,

3.2.3. PET weighted form

Preliminary Concepts:
• Weight: Assign a unique symbol (formal variable) to each color. For example, the weight of Red

(R) is    , and Blue (B) is    .
•  Weight of a Coloring: Coloring scheme weight is product of weights of colors upon all its

objects. For example, a four-bead necklace colored (R, B, R, B) has a weight of  

X G k

ZG xi = k i = 1, … ,n

Y X/G = ZG (k, k, . . . , k)∣ ∣Y X/G = 1
|G| ∑g∈G (Y X)

g∣ ∣ ∣ ∣ (Y X)
g

g

(Y X)
g∣ ∣ f ∈ Y X

g g ⋅ f = f

x ∈ X

f (g−1 ⋅ x) = f (x) x' = g−1 ⋅ x x = g ⋅ x'

f (x') = f (g ⋅ x') x' ∈ X

g X

f

f g

g

c (g) = ∑n
i=1 bi (g) Y

|Y | = k k

(Y X)
g

= kc(g) = k∑i
bi(g) = ∏n

i=1 k
bi(g)∣ ∣Y X/G =

1

|G|
∑
g∈G

kc(g) =
1

|G|
∑
g∈G

n

∏
i=1

kbi(g)∣ ∣ xi = k

ZG (x1, . . . ,xn)

Y X/G = ZG (k, k, . . . , k)∣ ∣r b
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  . This weight precisely records that the scheme has
"2 red beads and 2 blue beads."

• Pattern Inventory or Configuration Generating Function (CGF): The sum of weights of all non-
equivalent colorings (namely, all configurations). For example,    
means: there is 1 all-red pattern, 1 pattern with 3 reds and 1 blue, 2 patterns with 2 reds and 2 blues,
etc.

Theorem 3.4 (PET, Weighted Form). Let the weight of color      be     . The
configuration generating function     is gained via insteading specific power sums into cycle index:

That is, replace the variable      with the sum of the     -th powers of all color weights,  
 .

Proof.
28. The proof’s fulcrum means Burnside’s Lemma weighted version, which posits an equality

between the sum of all orbit weights and the mean of all fixed-point-set weights. The generating
function for configurations, ergo, is:

Herein,     is the weight common to all colorings in an orbit    , and     is the set of
colorings rendered invariant by the action of    .

29.  The immediate objective is to evaluate the inner summation, viz., the total weight of the
fixed-point set     for a given    .

30. A sine qua non for a coloring     to be a fixed point of     is that     must be constant on each
cycle of the permutation induced by    . Let the cycle decomposition of     be    .

31. The weight of such an invariant coloring     factorizes over the cycles of    . For a cycle    
on which     is constant with color    , its contribution to the product is ipso facto  
 .

32. Summing      over all     , the independence of color choices for each cycle
permits the interchange of summation and product:

W (f) = w (R) ⋅ w (B) ⋅ w (R) ⋅ w (B) = r2b2

F (r, b) = r4 + r3b + 2r2b2+. . .

yj ∈ Y w (yj)

F

F = ZG(∑
j

w (yj),∑
j

w(yj)
2, . . . ,∑

j

w(yj)
n)

xk k

∑j w(yj)
k

F = ∑
C∈C

W (C) =
1

|G|
∑
g∈G

∑
f∈(Y X)g

W (f)
⎛

⎝

⎞

⎠

W (C) C (Y X)
g

g

(Y X)
g

g

f g f

g g C1,C2, . . . ,Cc(g)

f g Cj

f ys ∈ Y (w (ys))|Cj|

W (f) = ∏
x∈X

w (f (x)) =
c(g)

∏
j=1

(w (ysj))
|Cj|

W (f) f ∈ (Y X)
g
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33. Regrouping the product by cycle length    , the contribution from the     cycles of length  

  is jointly    . The total sum is the product over all    :

34. Substituting this result into the weighted Burnside’s Lemma, we get:

• This is precisely the result of replacing each variable     in the cycle index    
with    .

3.2.4. Application examples

Example 3.5 (Chemistry: Isomers of Dichlorobenzene (    ) [2]). This problem can be
viewed as coloring the 6 vertices of a benzene ring with 4 hydrogen atoms (H) and 2 chlorine atoms
(Cl). The symmetry group is the dihedral group    .

• Objects    : The 6 hydrogen positions on the benzene ring,    .
• Colors    : {H, Cl}.
•  Group     :     , acting on the 6 vertices, with order 12. It contains 6 rotations (including

identity) and 6 reflections.
The cycle index of     acting on 6 vertices is:

Let the weight of H be     and Cl be    . According to the weighted PET, we replace     with  
 :

∑
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∏
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∏
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∏
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We are interested in the coefficient of the      term. We expand each term and extract this
coefficient:

• 

• 

• 

• 

•     The      term comes from  
  and    .    .

So the total coefficient is    . The final coefficient is    . A coefficient of 3
for the term      signifies the existence of three distinct dichlorobenzene isomers, known
nominatim as the ortho, meta, and para configurations.

Figure 2. The three structural configurations of dichlorobenzene, corresponding to the ortho, meta,
and para substitution patterns [2]

Example 3.6 (Graph Theory: Non-isomorphic graphs on 4 vertices [4]). This problem can be
viewed as 2-coloring (edge "exists" or "does not exist") the 6 edges of a complete graph    .

• Objects    : The 6 edges of    .
• Colors    : {exists, does not exist}, so the number of colors is    .
• Group    : The symmetric group     acting on the 4 vertices induces a permutation group on

the 6 edges, let’s call it    .    .
This induced group     ’s cycle index should be calaculated. This asks for analyzing how each

type of permutation in     acts on the set of edges.
• Identity (1 element):    . All edges are fixed. Permutation type is    .
• Transpositions (6 elements): e.g.,    . Edge     is fixed. Edge pairs    

and     are swapped. Edge     is fixed. Permutation type is    .
• 3-cycles (8 elements): e.g.,     . Edge pairs      and    

form two 3-cycles. Permutation type is    .

F (h, c) = ZD6 (h + c,h2 + c2, … ,h6 + c6) = 1
12
[ (h + c)6 + 2 (h6 + c6) + 2(h3 + c3)

2

+4(h2 + c2)
3

+ 3(h + c)2(h2 + c2)
2
]

h4c2

(h + c)6
⟹ ( 6

2
)h4c2 = 15h4c2

2 (h6 + c6)⟹ 0

2(h3 + c3)
2

= 2 (h6 + 2h3c3 + c6)⟹ 0

4(h2 + c2)
3

= 4 (h6 + 3h4c2 + 3h2c4 + c6)⟹ 4 ⋅ 3h4c2 = 12h4c2

3(h + c)2(h2 + c2)
2

= 3 (h2 + 2hc + c2) (h4 + 2h2c2 + c4) h4c2

h2 ⋅ 2h2c2 c2 ⋅ h4 3 (h2 (2h2c2) + c2 (h4)) = 3 (2h4c2 + h4c2) = 3 (3h4c2) = 9h4c2

15 + 12 + 9 = 36 36
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• 4-cycles (6 elements): e.g.,    . Edge pair     forms a 4-cycle. Edges
    and     are swapped. Permutation type is    .

• Double transpositions (3 elements): e.g.,     . Edges      and      are fixed. Edge
pairs     and     are swapped. Permutation type is    .

Thus, the cycle index is:

Applying the unweighted PET, with number of colors    :

It follows, ergo, that the enumeration of simple graphs on 4 vertices, modulo isomorphism, yields
a total of 11.

Figure 3. The 11 isomorphism classes of graphs with four vertices

Example 3.7 (Music Theory: Counting Triads [2]). The number of essentially different triads in
twelve-tone equal temperament.

• Objects    : All 3-element subsets of the 12 pitches    , for a total of    .
•  Group     : The transposition group     , acting as  

 .
Calculating fixed-point set size via Burnside’s Lemma:
•     (identity): All 220 triads are unchanged.    .
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= 1
24 (64 + 144 + 32 + 24)
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X {0, 1, . . . , 11} ( 12
3
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G Z12

k ⋅ {a, b, c} = {a + k, b + k, c + k} (mod 12)

k = 0 X 0 = 220∣ ∣



Proceedings	of	CONF-CDS	2025	Symposium:	Application	of	Machine	Learning	in	Engineering
DOI:	10.54254/2755-2721/2025.AST27004

31

• A triad     is invariant under transposition by     if the set     (mod
12) is the same as     . This requires transposition by      to be a symmetry operation of the
chord.

•    : For these transposition amounts, a set can only be invariant if all
pitches are the same, which contradicts the definition of a triad as a "3-element subset". So  

 .
•       (transposition by 4 semitones): The fixed points are chords constructed from notes 4

semitones apart, i.e., augmented triads. For example,    . After transposition by 4, it becomes
   , which is the same set. There are 4 such chords:    .
So    .

•     (transposition by 8 semitones): Same as the     case, the fixed points are the same 4
augmented triads. So    .

Number of orbits =    .

Figure 4. The chromatic circle in twelve-tone equal temperament [2]

4. Generalizations of Pólya’s enumeration theorem

While the classic PET is powerful, its application scenarios are still limited. Later mathematicians
generalized it from different perspectives, greatly expanding its theoretical content and range of
applications.

4.1. de Bruijn’s theorem: dual group action

The classic Pólya theory only considers one group      acting on the object set     . De Bruijn
generalized this to the case where another group     simultaneously acts on the color set   [4]. For
example, when coloring the vertices of a square, we might not only consider rotations as equivalent
but also permutations of colors (e.g., red becomes blue, blue becomes red) as equivalent.

{a, b, c} k {a + k, b + k, c + k}

{a, b, c} k

k = 1, 2, 3, 5, 6, 7, 9, 10, 11

Xk = 0∣ ∣ k = 4
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X 4 = 4∣ ∣k = 8 k = 4
X 8 = 4∣ ∣1
12 (220 + 0 ⋅ 8 + 4 + 4) = 1

12 (220 + 4 + 4) = 228
12 = 19

G X

H Y
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Definition 4.1 (Generalized Function Equivalence). Let      and     be two colorings in    .
They are defined as equivalent inter se as there's pair     so that equality below holds
for any choice of    :

This definition establishes an equivalence relation on     that is, ipso facto, action result from
direct product group    .

Theorem 4.2 (de Bruijn’s Theorem). Consider group action of     upon set     and, pari passu,
action of group     upon color set    . Total enumeration of inequivalent colorings, sub specie the
generalized equivalence, is furnished by the formula:

Herein,      enumerates length i’s cycles in permutation upon     induced from    ; mutatis
mutandis,      enumerates length j’s cycles in permutation upon      induced from     . Inner
summation extends over all positive integers     that are divisors of    .

Proof. The argument proceeds by applying Burnside’s Lemma ad hoc to direct product group  
  action upon function set (colorings)    .

35.  Application of Burnside’s Lemma: Per Burnside’s Lemma, count of orbits (inequivalent
colorings) equates to mean number of fixed points. Product group order is, ex hypothesi,  

 . The lemma, thus, takes the form:

• The term     herein denotes the set of functions     rendered invariant by action
of pair    .

36. Analyze the Fixed-Point Condition: Function     means fixed point of     as and only as  
 . By definition, this means:

•  Let     , which implies     . Substituting this into the condition, we get a
condition that must hold for all    :
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x' = g−1x x = gx'
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37.  Decomposition by Cycles of     : This condition implies that the coloring      must be
consistent across the cycles of the permutation     . Let’s consider a single cycle  

  of length     in X permutation induced from    . The elements are related by  
 .

• Let the elements     constitute a cycle of length     induced by the permutation  
  . An iterative application of the condition      along this cycle yields a general
formula for any element     therein:

• where     is taken to be the identity map. The closure of the cycle, i.e.,    , imposes,
ipso facto, the crucial constraint:

• This tells us two crucial things:
• The entire sequence of colors      is determined via choice of first

color    . Colors’ sequence must lie within an orbit of the action of     on    .
• The choice of      is not arbitrary. It must satisfy the condition     . This

means that     must belong to a cycle of the permutation     whose length, let’s say    , divides the
length     of the cycle    .

38. Count the Choices for a Single Cycle: Consider a cycle     of length     induced by    . The
constraint     , established supra, necessitates that the color choice for    
must be an element     whose orbit under the action of     has a length, say    , that divides    .
Action of      partitions color set      into disjoint cycles; let      stand for count of cycles of
length     . Colors’ number residing in such cycles of length      is     . The complete
enumeration of valid choices for      is, ergo, the sum of these quantities over all compatible
cycle lengths    :

39. Combine for All Cycles: The choices of coloring for different cycles of     are independent. If
the permutation     has a type    , meaning it has     cycles of length    ,
total enumeration of functions fixed via pair      is, ex necessitate, the product of the valid
choices available for each cycle:
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g f
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40. Final Substitution: Substituting this expression for the number of fixed points back into the
Burnside’s Lemma formula from Step 1 gives the final theorem:

4.2. Rota’s generalization: a lattice-theoretic approach

Rota and his collaborators re-contextualized Pólya’s theory within the broader framework of
algebraic combinatorics, specifically the theory of Möbius inversion on lattices. This perspective
reveals that PET is special case of more ordinary counting principle on partially ordered sets [5].

4.2.1. The lattice of periods and Galois connection

A fulcrum of Rota’s theory is the establishment of a Galois Connection that joins subgroup lattice  
  of permutation group     with partition lattice     of the set    .

• Map     : Maps a subgroup      to the partition      formed by its
orbits on    . We call this partition H period.

• Map    : Maps a partition     to the subgroup     consisting of all group
elements in      that leave blocks of      invariant. The subgroup      is, inter alia, the maximal
subgroup of     whose orbit partition refines    .

These two maps form a Galois connection, i.e., for all     and    , we have  
  if and only if     (    is a refinement of    ). This allows the definition of

closed subgroups (   ) and closed partitions (   ). The lattice of all closed
partitions (i.e., all periods) is denoted by    .

4.2.2. The incidence Algebra and Möbius inversion

To understand the core mechanism of the proof, we must first introduce the theory of Möbius
inversion on a partially ordered set (poset), as originally developed by Rota. The partition lattice  

  is a primary example of such a structure.
Let     be a poset that is, ex hypothesis, locally finite. The incidence algebra     of    

comprises all real-valued functions      on      that vanish for any pair      among
which     . Two such functions’ sum is defined pointwise, more solito; their product (a
convolution) is computed via formula:
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Within this algebra, three functions are of fundamental importance.
Definition 4.3 (Zeta, Delta, and Möbius Functions). For the partition lattice     , we define

the following functions in its incidence algebra:
• The zeta function     is the characteristic function of the ordering relation:

• The delta function     is algebra’s multiplicative identity:

• Möbius function     is multiplicative of zeta function’s inversion. It is defined recursively by the
relation:

or equivalently,    .
The power of the Möbius function lies in the Möbius Inversion Principle, which allows us to

invert summation formulas over the poset.
Theorem 4.4 (Möbius Inversion Principle). Let     and     be functions defined on the partition

lattice    . If

then we can invert this relationship to solve for    :

Proof. The relation     can be expressed in the incidence algebra as    .
Multiplying by     on the left gives   . Writing this out in terms of

(fg) (x, y) = ∑
x≤z≤y

f (x, z)g (z, y)

Π (S)

ζ

ζ (π, τ) = {
1 if π ≤ τ

0 otherwise
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δ (π, τ) = {
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0 otherwise

μ

∑
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μ (π,σ) = δ (π, τ)
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A B

Π (S)

B (π) = ∑
τ≥π

A (τ)

A (π)

A (π) = ∑
τ≥π

μ (π, τ)B (τ)

B (π) = ∑τ≥πA (τ) B = ζA

μ μB = μ (ζA) = (μζ)A = δA = A
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the function values yields the theorem.
This principle is the foundation for the proof of the generalized theorem that follows.

4.2.3. Generalized theorem and Möbius inversion

Rota et al. proved that a generalized Pólya’s theorem can be derived directly through a double
Möbius inversion on the lattice of periods    .

Theorem 4.5 (Rota & Smith, 1977). Let     be a    -invariant class of functions (i.e., a union of  
 -orbits). The enumeration of the    -equivalence classes within     is affected by the generating

function:

where:
•     is the generating function for functions whose period is exactly    .
•     is the index of     in    , representing the size of the orbit containing functions

with period    .
•     is a counting function, representing the number of group elements whose cycle structure

is exactly the partition    .
•       is the generating function for all functions that are "compatible" with the partition    

(i.e., constant on each block of    ).
Proof.
41. Define Generating Functions: For any partition    , define     as the generating

function for all functions whose kernel is exactly    . Define     as the generating function for
all functions whose kernel is a refinement of     . Clearly,     . By Möbius
inversion,    .

42.  Connect Period and Kernel: The period of a function is the closure of its kernel. Define  
  as the generating function for all functions with period    . Then    .

43.  Establish the Core Relation: The left side is the quantity we seek, the sum of generating
functions for all non-equivalent configurations. By definition, it is    .

• where
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• Using Möbius inversion    :

44. Double Möbius Inversion: Rota and Smith proved that the inner sum     is
equal to     . This step is the key to the proof and is itself a Möbius inversion on the partition
lattice.

• Therefore, the original expression becomes:

• Since     unless     is a period, the summation can be restricted to the lattice of periods
  , proving the theorem.

4.2.4. Connection to classic PET

Rota’s generalized theorem can be simplified back to the classic Pólya’s theorem in two steps.
45. Step 1: Simplify to a sum over group elements. The right side of Rota’s theorem is a sum over

partitions. Noting that     means group elements’ number with cycle structure    , we can change
the summation object from partition     to group element    . Let     be the partition determined
by the cycles of    .

•       is the generating function for all functions constant upon      cycles, precisely
generating function of functions fixed via    . Thus, inventory of all G-equivalence classes equals  

 . This is the weighted Burnside’s Lemma itself.
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∑
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46. Step 2: Calculate the inventory of fixed points. For the most common case, where the "proper
class" is the set of all functions    , we can directly calculate the inventory of functions fixed by  
 . As shown in the proof of PET, this inventory is exactly:

• Substituting this into the result of the first simplification fully derives the weighted form of the
classic PET.

This perspective reveals that the essence of Pólya’s theorem is a Möbius inversion on a lattice
structure related to the group action, thus placing it in the broader context of algebraic
combinatorics.

4.3. Fujita’s stereochemical method

Classic Pólya theory has serious limitations when dealing with stereochemistry, especially chiral
isomers [1]. It treats substituents (colors) as "points" with no internal structure, unable to distinguish
between chiral and achiral substituents, nor can it correctly handle meso-compounds and
pseudoasymmetry issues.

4.3.1. Fujita’s core ideas and theory

Fujita generalized Pólya’s theory from point group symmetry to a more refined orbital symmetry by
introducing the concept of "sphericity."

47.  Sphericity and Cycle Index with Chirality Fittingness, or CI-CF: Fulcrum contribution of
Fujita was recognizing that an orbit under a group action not only has a size but also a symmetry. He
classified orbits into three types:

• Homospheric Orbit: The orbit itself is achiral, and its stabilizer is a supergroup of a proper
rotation group (i.e., contains improper rotations). For example, the orbit formed by the four H atoms
in methane.

• Enantiospheric Orbit: The orbit itself is achiral, but its stabilizer is a proper rotation group (a
chiral group). For example, the orbit formed by the two H atoms in dichloromethane.

• Hemispheric Orbit: The orbit itself is chiral. This is uncommon in rigid molecules but can occur
in non-rigid ones.

•  Based on this, he replaced the variable      in the cycle index with three different variables
corresponding to the three sphericities, thus proposing the CI-CF. E.g. the CI-CF of the tetrahedral
group     acting on four vertices is

•  where      corresponds to homospheric cycles,      to hemispheric cycles, and      to
enantiospheric cycles. This formula precisely encodes how the chirality of substituents interacts with
the symmetry of the skeleton.

Y S g

∑
f∈(Y S)
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∏
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(∑
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48.  System of Recursive Equations: The enumeration of recursive structures, e.g., alkanes,
necessitates a system of three coupled recursive equations corresponding to the three sphericities,
rather than a single equation. Generating functions     ,     , and      are introduced to
enumerate three distinct classes of alkyl groups, respective:

•    : for achiral groups.
•    : for "diploid" groups (comprising achiral or enantiomeric pairs).
•     : for the total enumeration of alkyl groups, wherein chiral enantiomers are counted

distinctly.
• These functions are derived from substitutions into the corresponding CI-CFs:

• Solving this system recursively furnishes the inventory of foundational moieties (alkyl groups),
a prerequisitum for the final enumeration.

49.  Dual Recognition and Subtraction Principle: To avoid double-counting the same molecule,
Fujita proposed a clever dual recognition and subtraction principle. Any alkane (viewed as a 3D-
tree) can be observed in two ways:

• Uninuclear Tree: Centered on a carbon atom, viewed as a substituted methane (    skeleton).
• Binuclear Tree: Centered on a carbon-carbon bond, viewed as a substituted ethane (   

skeleton, simplified to     or similar symmetry).
•  Fujita proved that by calculating all possible uninuclear trees and subtracting all possible

binuclear trees, one can precisely obtain the number of all unbalanced trees. An unbalanced tree is
one that has no "balance-edge" (an edge whose removal results in two non-equivalent subtrees).
Then, the number of all balanced trees is calculated separately.

• This method systematically solves the problem of double counting and correctly handles meso-
compounds (which are special cases of balanced trees).

4.3.2. Example: stereoisomer counting of pentane ( C5H12 )

We will use Fujita’s method step-by-step to calculate the number of stereoisomers of pentane to
demonstrate the specific application process of the method [6].

50. Calculate Generating Functions for Basic Building Blocks (Alkyl Groups): First, we need to
calculate the number of types of small-carbon alkyl groups through the system of recursive
equations.      denotes the number of achiral alkyl groups with k carbons, and      denotes the
number of all alkyl groups (without distinguishing chiral enantiomers).

a (x) c (x2) b (x)

a (x)

c (x2)
b (x)

a (x) = 1 + xa (x)c (x2)

b (x) = 1 + x
3 {b(x)3 + 2b (x3)}

c (x2) = 1 + x2

3 {c(x
2)

3
+ 2c (x6)}

Td

D∞h

D3d

Ntotal = Nunbalanced + Nbalanced

= (Nuninuclear − Nbinuclear) + Nbalanced

ak bk
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    (H):    .
    (methyl,    ):    .
    (ethyl,    ):    .
    (propyl and isopropyl):    .
    (4 types of butyl):    .
• These coefficients will be used in the subsequent steps.
51. Calculate Gross Number of Uninuclear Trees    : The fons et origo of this value is given

the generating function, ut sequitur:

• We shall extract     's coefficient. This means combination of central carbon atom (1 C) and
four alkyl groups (totaling 4 C). Possible carbon number partitions for the alkyl groups are (4,0,0,0),
(3,1,0,0), (2,2,0,0), (2,1,1,0), (1,1,1,1). By substituting the pre-calculated alkyl count values, we can
get the number of all possible uninuclear trees (i.e., observations centered on each carbon atom).

• Isopentane: Centered on the tertiary carbon, yields 1 uninuclear tree.
• Neopentane: Centered on the quaternary carbon, yields 1 uninuclear tree.
• n-Pentane: Centered on carbon 2 or 4, yields 1 uninuclear tree; centered on carbon 3, yields

another. Thus, n-pentane contributes 2 different uninuclear trees.
• Hence, uninuclear trees’ total number is    . That is,    .
52. Calculate Total Binuclear Trees (Contaminants)     : This value is obtained through the

generating function, ut sequitur:

• We need to extract    's coefficient, which means sum of carbon numbers of two alkyl groups
is 5. Possible partitions are (1,4) and (2,3).

• (methyl, butyl): Corresponds to the C1-C2 bond of isopentane, etc.
• (ethyl, propyl): Corresponds to the C2-C3 bond of n-pentane.
• After calculation, only the binuclear tree formed by the central bond of n-pentane (C2-C3 or

C3-C4) needs to be subtracted as a "contaminant". Therefore,    .
53.  Calculate Number of Unbalanced Trees     : According to the subtraction principle,  

  . These three unbalanced trees are precisely: n-pentane,
isopentane, and neopentane.

54.  Calculate Number of Balanced Trees     : A balanced tree requires a "balance-edge"
which, when cut, results in two equivalent subtrees. For pentane, there are no isomers that satisfy
this condition. Therefore,    .

55.  Calculate Total Number of Isomers     : The total enumeration of isomers is an
aggregation of two distinct counts, videlicet, that of balanced and that of unbalanced trees:

∙k = 0 a0 = 1, b0 = 1
∙k = 1 −CH3 a1 = 1, b1 = 1
∙k = 2 −C2H5 a2 = 1, b2 = 1
∙k = 3 a3 = 1, b3 = 2

∙k = 4 a4 = 2, b4 = 4

G
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5

G(x)(AC) =
x

24
{b(x)4 + 3b(x2)

2
+ 8b (x)b (x3) + 6a(x)2

c (x2) + 6c (x4)}

x5

1 + 1 + 2 = 4 G
(AC)
5 = 4

C
(AC)
5

C(x)(AC) =
1

4
{(b (x) − 1)2 + (b (x2) − 1) + (a (x) − 1)2 + (c (x2) − 1)}

x5

C
(AC)
5 = 1

U
(AC)
5

U
(AC)
5 = G

(AC)
5 − C

(AC)
5 = 4 − 1 = 3

B
(AC)
5

B
(AC)
5 = 0

N
(AC)
5



Proceedings	of	CONF-CDS	2025	Symposium:	Application	of	Machine	Learning	in	Engineering
DOI:	10.54254/2755-2721/2025.AST27004

41

• This result correctly concludes that there are 3 isomers of pentane. By further using formulas
specific to chirality and a chirality, it can be determined that all 3 isomers are achiral, which is in
complete agreement with chemical facts.

Figure 5. Eight achiral balanced 3D-trees (including three meso-compounds) and three enantiomeric
pairs of chiral balanced 3D-trees of decane [1]

5. Conclusion and future work

This study has systematically reviewed Pólya’s Enumeration Theorem and its important
generalizations. Building on this, future research can extend to deeper levels of abstract theory and
broader application areas.

A major direction is to delve deeper into the Theory of Combinatorial Species. This theory is
considered the "grand unified framework" for all the enumeration theories mentioned above. It uses
the language of category theory (specifically, functors) to describe combinatorial structures, directly
linking the construction of combinatorial objects (such as addition, multiplication, composition)
with the corresponding operations on generating functions (addition, multiplication, composition).
From the perspective of species theory, Burnside’s Lemma and Pólya’s Enumeration Theorem could
be seen as natural consequences of counting "unlabeled species" [7]. Systematically learning and
applying species theory can not only re-derive all the theorems discussed in this paper in a more
elegant and unified way but also provide powerful new tools for solving enumeration problems for a
wider and more complex range of combinatorial structures (such as planar graphs, decompositions
of permutations, etc.).

Another direction is to explore the application of Pólya’s enumeration theory in other scientific
and technological fields. Beyond chemistry, graph theory, and music, any counting problem

N
(AC)
5 = U

(AC)
5 + B

(AC)
5 = 3 + 0 = 3
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involving symmetry could be a potential area for its application. For example, in physics, the
classification of crystal structures and particle states by symmetry; in computer science, the
partitioning of equivalence classes of finite state automata, the non-isomorphic counting of data
structures (such as various types of trees and graphs), and the classification of Boolean functions, all
have the potential for applying Pólya’s theory. Combining this theory with knowledge from specific
domains to develop new counting models and solve concrete problems in those fields would be a
fruitful line of research.
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