A review on speckle reduction techniques in SAR images

Prabhishek Singh¹, Ankur Maurya², Achyut Shankar³, Sathishkumar V. E.^{4,6}, Manoj Diwakar⁵

Abstract. Synthetic Aperture Radar (SAR) is satellite imagery that has multiple applications in variegated fields but is often corrupted by single dependent multiplicative speckle noise. Its multiplicative nature decreases scope for image perception, recognition & limits SAR image's applications. Thus, increasing the need for effective & astute SAR image despeckling techniques that not only excise speckle noise but also preserve SAR imageries features, details, and resolution quality. This study analyses various research literature & techniques namely, Adaptive Speckle Reduction Filter, Conditional Averaging filter, Speckle Reduction Filter, Anisotropic diffusion, Speckle Reduction Filter and Speckle Reduction Filter from theoretical, quantitative & qualitative aspects using indexes like SSIM, and RMSE to discover the comparatively superior approach.

Keywords: Synthetic Aperture Radar (SAR), Speckle Noise, SSIM, RMSE

1. Introduction

Radar imaging is a category of satellite imagery which creates two-dimensional and three-dimensional images, typically of landscapes. It captures images by imparting its light to illuminate the zone, receiving the reflection and storing the information at the radio wavelength. Radar imaging techniques could be primarily bifurcated into two categories: Real aperture radar (RAR) and Synthetic aperture radar (SAR). RAR captures images by transmitting a pulse of radio wavelength at right angle and further receives the backscattering which gets transformed into an image. While SAR yields high resolution images as it grants distinctive long-term coherency by moving the antenna through a series of positions [1]. It inhibits the movement of radar antenna over a target region to provide finer spatial resolution than conventional beam-scanning radars. The images are configured from the satellite by the rapid interaction and contraction of the emitted radiations from antenna with the target region. This makes SAR produce a finer quality of image over other techniques [3]. Over the last few decades, many researchers have come up with different algorithms and techniques to put forward the most optimal solution for SAR image despeckling [1-6], however there is still a need for a comprehensive study that analyses all of these and giving a high-level view of all the (real speckled SAR image is shown in Figure 1) research that guide

^{1,2}School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India

³University of Warwick, UK

⁴Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Jeonju-si, Republic of Korea

⁵Graphic Era Deemed to be University, Dehradun, India

⁶sathish@jbnu.ac.kr

^{© 2023} The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

the subsequent research in Image processing [15]. This research has come up with a comprehensive and concise study of all the techniques and studies that have been put forward and discussed over the past few decades, which will give the researcher an all-in-one detailed explanation to find their best fit technique [16-18]. Based on research studies the filtering techniques are shown in Figure 2 [19].

Figure 1. Real Speckled SAR image [1].

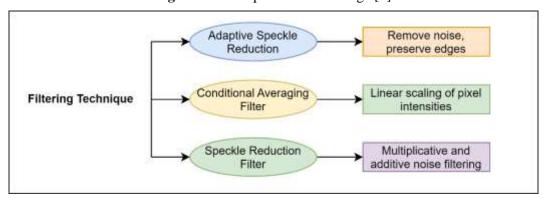


Figure 2. Filtering techniques [4].

The sections presented in the paper are as follows: The related work is discussed in section 2. Empirical and experimental result analysis of SAR images is studied in section 3. Finally, we procure conclusion and possible future work in section 4.

2. Literature survey

The literature survey of the paper is given in Table 1.

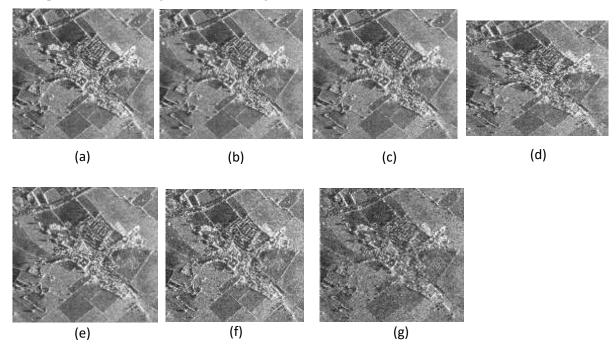
Table 1.

Reference	Aim & Technique	Advantage	Disadvantage
No. Lattari et al, 2019 [2]	Deep encoder—decoder CNN i.e., U-net CNN framework is used in two phases, model is pre trained on synthetic & real SAR data in 1st stage. 2nd stage includes fine training by total variation (TV)	Uses complex deep learning architecture without trade-off between texture preservation & performance. Validates proposed framework by using real & stimulated data.	The stimulated noise added to the images was primordial in nature, may or may not be similar to real SAR data. A wider domain of test data could further edify the significance of study
	regularization.		

Table 1. (continued).

Zhang et al,	A non-linear end	Skip connection & residual	Quantitate & visual
2018 [4]	enclosed mapping	learning preserves the	assessment indexes used
2010 [4]	between the noisy and	texture, details and edges	are limited and insular.
	denoised SAR is	while solving the decreasing	are minica and msarar.
	performed by using	gradient issue. Displays	
	dilated residual	tenable results for strong	
	network (SAR-DRN)	speckle noise.	
	for SAR despeckling.	The framework is	
	Tor Start Gosponius.	lightweight to implement.	
Mastriani et	Proposes a novel	Leverages signal regularity	The study compares
al, 2016 [6]	Neural Shrinkage (NS)	advantage of using wavelet	proposed framework with
ui, 2010 [0]	algorithm for	shrinkage signal, but unlike	only linear speckle
	despeckling SAR	classic shrinkage methods it	reduction method, a wider
	imageries while	can track time scale changes	comparison could extend
	monitoring local time	& preserves image	the reach of study.
	scale variation.	resolution.	
		Aids gradient learning	
		process, with lower	
		computation cost.	
Cozzolino et	A deep learning &	The comparative analysis is	The step wise increment
al, 2019 [8]	non-local mean	cogent & convincing, due to	of weights backtracks the
	filtering approach that	presence of latest work.	framework & pixel wise
	leverages self-	Results for both synthetic &	filtering increases the
	similarity of non-local	real SAR images is tenable.	computation complexity.
	mean filtering is used	-	
Gragnaniello	Implements optimized	The experiments validate the	Though the comparison is
et al, 2015	pixel wise	proposed technique with	made with latest
[10]	classification with	high resolution real SAR	techniques, but the
	non-local filtering	images. The comparative	parameters used to do so
	technique to develop a	analysis presented with	are limited.
	novel soft	complete & cogent.	
	classification		
	technique.		
Ma et al,	Removing speckle	It displays tenable	Comparative analysis &
2016 [11]	noise from SAR	performance in real multi	parameters are limited in
	images by applying	temporal SAR images.	nature, posing the research
	two methods namely,		to be insular in nature.
	logarithmically		
	transformation and		
	novel adaptive method		
W	are used	TD1 1	C
Yommy et	A novel despeckling	The proposed method	Comparative analysis &
al, 2015 [12]	SAR technique is	outperforms the classical	parameters are limited in
	obtained by using k	techniques & Refined Lee	nature, posing the research
	nearest neighbour	Filter (RLF), along with	to be insular in nature.
	method	decreased computational &	
		space complexity.	

Table 1.	(continued)	١.
----------	-------------	----


Di Martino et	A novel physical-	The proposed methodology	The acquisition &
al, 2016 [13]	oriented probabilistic	exhibits substantial increase	application of appropriate
	patch-based (PPB)	in performance from both	knowledge about physical
	filter technique is used	qualitative & quantitative	attributes can be
		aspects by the application of	challenging & time
		knowledge gathered from	intensive in nature.
		physical aspects.	

3. Experimental results and discussion

Radar imaging is a category of satellite imagery which creates two-dimensional and three-dimensional images, typically

3.1. Comparative qualitative analysis

In this section, experimental results of the various algorithms studies along with some images are presented to provide evidence for the effectivity of the same. The SAR image used have been shown in Figure 3, while the output of the qualitative analysis is shown in Figure 4. SAR images with artificially added noise of 5% having dimensions of 512 x 512 pixels have been used to test the performance of the algorithms. All experiments have been performed on MATLAB 2018a running on an 8th Gen i5 processor 8GB of Ram and a 64bit system. The impact of the hardware on the performance of the algorithms have been acknowledged. Six of the widely used state of the art speckle noise removal techniques namely, [11][9][7][8][1][14], have been compared against each other. Amongst them,[11] gave the best visual result with a noticeable decrease in the noise and some significant recovery of the details present in the background of the image.

Figure 3. (a) SAR image taken for the evaluation of the techniques (b) Despeckled result [11] (c) Despeckled result [9] (b) Despeckled result [7] (b) Despeckled result [8] (b) Despeckled result [1] (b) Despeckled result [14].

3.2. Comparative quantitative analysis

A set of 12 images were used to measure the accuracy of the techniques, leveraging commonly used image metrics such as SSIM and RMSE. In most of the cases, [11] gave the highest result with [9] at a close second. A set of 12 images were used to measure the accuracy of the techniques, leveraging commonly used image metrics such as RMSE, SSIM.

RMSE	SSIM
4.043	0.993
3.952	0.985
5.054	0.9796
13.776	0.873
11.43	0.9201
14.106	0.862
	4.043 3.952 5.054 13.776 11.43

Table 2. RMSE, SSIM values for the techniques used.

In Table 2 as shown above, the data of the average of all the frameworks across all the techniques have been laid bare for perusal. Form the above data certain inferences can be drawn. The performance of [11][9] and [8] have been very close to each other, with 9% standard deviation. In a similar fashion, [7][14] and [1] have been verisimilitude across the board.

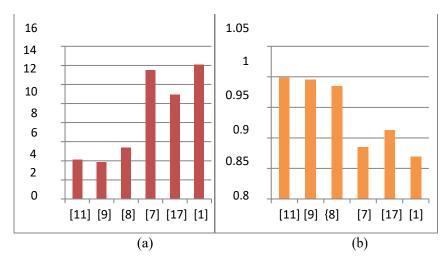


Figure 5. Plot of average of (a) RMSE and (b) SSIM for the techniques used.

The average values of the scores by the six techniques for the various measures applied over the full dataset are shown in Figure 5. This is done primarily for space reasons since it is beyond the scope of this paper to include 48 graphs to illustrate all techniques across all images. Only in this case [1] performed markedly worse than the others with a score of just 81%. The cause for this is attributed to a change of contrast in all images processed using [1]. RMSE has been taken instead of MSE to normalize the range of variation between the techniquesand between the images themselves. The formula for RMSE is given below by equation 1.

$$RMSE = \sqrt{\frac{\sum_{l=1}^{K} ||a(l) - \hat{a}(l)||^2}{K}}$$
 (1)

Here K represents number of data points, a(1) is the 1-th measurement, and $\hat{a}(l)$ is corresponding prediction of a(l). In terms of overall quality preservation, both [11] and [9] give similar results, however on magnification of the images it is evident that slight blurring is present at the edges of objects in case of [9]. For practical applications both might give good results, but more evaluation may be needed in special cases. Form the above data certain inferences can be drawn. The performance of [11][9] and [8] have been very close to each other, with 9% standard deviation. In a similar fashion, [7][14] and [1] have been verisimilitude across the board.

4. Conclusion and future scope

In this research, contemporary review on latest SAR image despeckling techniques & approaches is performed including methods and filtering techniques on visual and qualitative perspective namely, Adaptive Speckle Reduction Filter, Conditional Averaging filter, Speckle Reduction Filter, Anisotropic diffusion, Speckle Reduction Filter and Speckle Reduction Filter. These filtering techniques assist in eliminating the noise while preserving the features, details & quality that contribute to significance in radar imagery. Conditional averaging filtering technique and Adaptive Speckle reduction technique despeckle the noise from image by fusion of multiplicative and additive filtering, thus making it significant to restore the vital and necessary information like edges and core that usually settle unfiltered during the initial stages of despeckling. An empirical & theoretical analysis using SSIM, RMSE factors discussing the worthiness of variegated techniques proposed is followed.

References

- [1] Vitale, S., Ferraioli, G., & Pascazio, V. (2019, July). A new ratio image based CNN algorithm for SAR despeckling. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 9494-9497). IEEE.
- [2] Lattari, F., Gonzalez Leon, B., Asaro, F., Rucci, A., Prati, C., & Matteucci, M. (2019). Deep learning for SAR image despeckling. Remote Sensing, 11(13), 1532.
- [3] Vitale, S., Cozzolino, D., Scarpa, G., Verdoliva, L., & Poggi, G. (2019). Guided patchwise nonlocal SAR despeckling. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6484-6498.
- [4] Zhang, Q., Yuan, Q., Li, J., Yang, Z., & Ma, X. (2018). Learning a dilated residual network for SAR image despeckling. Remote Sensing, 10(2), 196.
- [5] Chierchia, G., El Gheche, M., Scarpa, G., & Verdoliva, L. (2017). Multitemporal SAR image despeckling based on block-matching and collaborative filtering. IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5467-5480.
- [6] Mastriani, M., & Giraldez, A. E. (2016). Neural shrinkage for wavelet-based SAR despeckling. arXiv preprint arXiv:1608.00279.
- [7] Cozzolino, D., Verdoliva, L., Scarpa, G., & Poggi, G. (2020). Nonlocal CNN SAR Image Despeckling. Remote Sensing, 12(6), 1006.
- [8] Cozzolino, D., Verdoliva, L., Scarpa, G., & Poggi, G. (2019, July). Nonlocal SAR image despeckling by convolutional neural networks. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 5117-5120). IEEE.
- [9] Zhao, W., Deledalle, C. A., Denis, L., Maître, H., Nicolas, J. M., & Tupin, F. (2018, July). RABASAR: A fast ratio based multi-temporal SAR despeckling. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 4197-4200). IEEE.
- [10] Gragnaniello, D., Poggi, G., Scarpa, G., & Verdoliva, L. (2015, July). SAR despeckling based on soft classification. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2378-2381). IEEE.
- [11] Ma, X., Shen, H., Zhao, X., & Zhang, L. (2016). SAR image despeckling by the use of variational methods with adaptive nonlocal functionals. IEEE Transactions on Geoscience and remote sensing, 54(6), 3421-3435.

- [12] Yommy, A. S., Liu, R., & Wu, S. (2015, August). SAR image despeckling using refined Lee filter. In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (Vol. 2, pp. 260-265). IEEE.
- [13] Di Martino, G., Di Simone, A., Iodice, A., & Riccio, D. (2016). Scattering-based nonlocal means SAR despeckling. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3574-35.
- [14] Dutt, V., & Greenleaf, J. F. (1996). Adaptive speckle reduction filter for log-compressed B-scan images. IEEE Transactions on Medical Imaging, 15(6), 802-813.
- [15] Dhaka, A., & Singh, P. (2020). Comparative analysis of epidemic alert system using machine learning for dengue and chikungunya. Paper presented at the Proceedings of the Confluence 2020 10th International Conference on Cloud Computing, Data Science and Engineering, 798-804. doi:10.1109/Confluence47617.2020.9058048
- [16] Ghose, S., Singh, N., & Singh, P. (2020). Image denoising using deep learning: Convolutional neural network. Paper presented at the Proceedings of the Confluence 2020 10th International Conference on Cloud Computing, Data Science and Engineering, 511-517. doi:10.1109/Confluence47617.2020.9057895
- [17] Singh, P., Diwakar, M., Cheng, X., & Shankar, A. (2021). A new wavelet-based multi-focus image fusion technique using method noise and anisotropic diffusion for real-time surveillance application. Journal of Real-Time Image Processing, 18(4), 1051-1068. doi:10.1007/s11554-021-01125-8
- [18] Diwakar, M., Tripathi, A., Joshi, K., Sharma, A., Singh, P., Memoria, M., & Kumar, N. (2020). A comparative review: Medical image fusion using SWT and DWT. Materials Today: Proceedings, 37(Part 2), 3411-3416. doi:10.1016/j.matpr.2020.09.278
- [19] Bhatt, M. B., Arya, D., Mishra, A. N., Singh, M., Singh, P., & Gautam, M. (2019). A new wavelet-based multifocus image fusion technique using method noise-median filtering. Paper presented at the Proceedings 2019 4th International Conference on Internet of Things: Smart Innovation and Usages, IoT-SIU 2019, doi:10.1109/IoT-SIU.2019.8777615