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Abstract. Sepsis is a severe disease with a relatively high fatality rate. The treatment assignment 

of antibiotics is one of the most crucial factors in reducing the mortality rate. Existing machine 

learning models are designed to estimate the individual time-to-treatment effect of the antibiotic. 

However, most models need more efficiency and stability in overcoming the selection bias 

problem. This paper applies two methods of debiasing samples and estimating individual 

treatment effects. By re-weighting, we create pseudo mini-batches that mimic the corresponding 

randomized controlled trial (RCT) process. We also adopt Inverse Propensity Score Weighting 

(IPW) method to assign appropriate weight to each sample in the observation dataset by 

estimating the propensity scores. We assume Doubly Robust (DR) to combine IPW and outcome 

regression model. On a real-world dataset, the experiments exhibit the ability of the model to 

successfully identify effective timing of treatment. 

Keywords: ITE estimation, inverse propensity score weighting, Doubly Robust, antibiotic 

assignment. 

1.  Introduction 

Sepsis is a highly challenging condition that arises from a severe infection and can lead to devastating 

outcomes such as multi-organ failure, tissue damage, and death [1]. According to the Centers for Disease 

Control and Prevention (CDC) report, a minimum of 1.7 million adults in the United States develop 

sepsis annually, with an estimated 270,000 fatalities [2]. This staggering statistic indicates that sepsis 

significantly impacts public health, with approximately 0.5% of the American population affected by 

this condition. Additionally, the mortality rate among adult sepsis patients is around 15%, further 

highlighting the severity and urgency of this disease. 
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Sepsis is a serious and highly time-dependent condition in contemporary medical practice. Both the 

early administration of appropriate antimicrobial therapy and adequate source control are crucial 

interventions for survival rate improvement [3]. The antibiotic treatment for sepsis does not adhere to a 

strict schedule but remains subject to adjustment based on individual patient factors and clinical 

response. The Korean Sepsis Alliance (KSA) research shows that the time administration of antibiotics 

is a crucial factor in reducing the sepsis mortality rate [4]. Therefore, a designed antibiotic intake 

schedule must be introduced into medicine. 

Algorithms and statistical models can predict the treatment effects of different antibiotics. Machine 

learning models [5-7] have been created to discover the ideal antibiotic intake timing by analyzing sepsis 

patients' biological characteristics, demographics, vital signs, and medical exam results through online 

medical records. The outcomes from algorithms will estimate the individual treatment effect (ITE) and 

conditional average treatment effect (CATE). However, some models can be improved using different 

causal inference techniques to estimate causal effects. For example, the algorithm demonstrated in the 

T4 model proposed by R. Liu [6] applies the propensity score matching method, which requires much 

time to traverse and search for comparable treated or untreated units and leads to low efficiency 

compared to other techniques. It is also dangerous if there is a slightly overlap of the propensity score 

between treated and control groups. Considering this situation, the matching on the propensity score 

discrepancy will be significant, leading to bias. 

In this paper, we introduce two methods of addressing the problem of selection bias and estimating 

ITE, explain their respective procedures, and show the relative advantages of sample re-weighting over 

balancing matching. Through re-weighting, we create pseudo-mini batches that mimic the 

corresponding randomized controlled trial (RCT) process. 

Our model applies the Inverse Propensity Score Weighting (IPW) method [8,9] to assign appropriate 

weight to each sample in the observation dataset by estimating the propensity scores and the conditional 

probability of receiving the treatment of each piece. The model applies the Doubly Robust (DR) method 

[10,11] to combine the inverse propensity score weighting with the outcome regression. After estimating 

the propensity score of each patient with the pre-trained T4 model [6], we leverage IPW and DR to 

assess the individual treatment effect for each patient at each timestamp with both the propensity score 

estimation model and the outcome regression model and is expected to generate a more precise effect 

from antibiotics. 

Finally, we analyze the utilization of the model with proposed methods in a real-world dataset 

composed of vital signs and lab tests recorded by EHR. We compare the mortality rate of patients who 

took the recommended antibiotic assignment and those who did not. We predict the Sequential Organ 

Failure Assessment (SOFA) score in the case study and estimate ITEs. The results exhibit the ability of 

the model to identify the successful timing of treatment effectively, thus paving the way for 

individualized antibiotic assignment. 

The remainder of the paper is organized in the following sections: 

• Two ITE estimation methods: sample re-weighting over balancing matching to address the 

problem of selection bias and their respective procedures. 

• The application of the Inverse Propensity Score Weighting (IPW) to estimate the ITE and the 

estimation of the propensity scores. 

• The application of the Doubly Robust (DR) method to combine IPW and outcome regression 

model. 

• Tests and a case study of the model with proposed methods in a real-world EHR dataset. 

• Final conclusion and prospects of our research. 

2.  Preliminary 

According to the T4 model proposed by R. Liu [6], we extract information about patients by observing 

them at different timestamps. For each sample, the treatment assignment is 𝐴𝑇 = {𝑎1, 𝑎2, … , 𝑎𝑇} ∈ 𝒫𝑇. 

If the patient is treated at 𝑡-th time, then 𝑎𝑡 = 1, otherwise 𝑎𝑡 = 0. Temporal covariates are 𝑋𝑇 =
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{𝑥1, 𝑥2, … , 𝑥𝑇} ∈ ℛ𝑇×𝐾𝑥  and the results of 𝑇-timestamps are 𝑌𝑇 = {𝑦1, 𝑦2, … , 𝑦𝑇} ∈ ℛ𝑇 . The sample 

has static covariates 𝑑 ∈ ℛ𝐾𝑑, as age or sex, provided that age of the patients does not change during 

treatment. Observation data for patients can be expressed as 𝒟 = {𝐴𝑡 , 𝑋𝑡 , 𝑌𝑇 , 𝑑}. 

The idea is to measure the effect of treatment of antibiotic treatment assignment with time and static 

covariates by forecasting possible outcomes at different times. However, we do not predict the possible 

results of the treatment sequence 𝐴𝑡+1,𝑡+𝜁 = {𝑎1, 𝑎2, … , 𝑎𝜁} because the estimated inclination score 

would be too small compared to the treatment assignment. Instead, we focus on the potential outcomes 

of the treatment on single timestamps. There are two possible results  𝔼[𝑌(𝐴𝑡+𝑗 = 1)|𝑋𝑡 , 𝐴𝑡 , 𝑑],  

𝔼[𝑌(𝐴𝑡+𝑗 = 0)|𝑋𝑡 , 𝐴𝑡 , 𝑑] corresponding to the different treatment tasks for each timestamp 𝑡 + 𝑗. 

Several methods are proposed to measure treatment effect, including conditional average treatment 

effect (CATE) and individual treatment effect (ITE). The ITE, 𝛿𝑗, of (𝑡 + 𝑗)-th timestamp, is defined as 

follows:  

 𝛿𝑗 = 𝔼[𝑌(𝐴𝑡+𝑗 = 1)|𝑋𝑡, 𝐴𝑡 , 𝑑] − 𝔼[𝑌(𝐴𝑡+𝑗 = 0)|𝑋𝑡, 𝐴𝑡 , 𝑑] (1) 

The Sequential Organ Failure Assessment (SOFA) scores [12] (between 0 and 24, the higher the 

number, the more severe the disease and the higher the death rate) are used as results 𝑌𝑡+𝑗 in this work. 

According to Table 1, we can calculate the SOFA score based on periodically collected temporal data 

from electronic health records (EHRs) [13,14]. The sample's laboratory results, vital signs, and 

demographic data are included. 

Table 1. The criteria for assessment of SOFA score [12]. 

Respiratory system  Nervous system  

PaO2/FiO2 (mmHg) SOFA score Glasgow Coma Scale SOFA score 

> 400 0 15 0 

< 400 1 13-14 1 

< 300 2 10-12 2 

< 200 with respiratory support 3 6-9 3 

< 100 with respiratory support 4 < 6 4 

Cardiovascular system  Liver  

Mean arterial pressure (MAP) SOFA score Bilirubin (mg/dl) 

[μmol/L] 

SOFA score 

MAP > 70 mmHg 0 < 1.2 (< 20) 0 

MAP < 70 mmHg 1 1.2–1.9 [20–32] 1 

Dopamine ≤ 5 μg/kg/min 2 2.0–5.9 [33–101] 2 

Dopamine > 5 μg/kg/min 3 6.0–11.9 [102–204] 3 

Dopamine > 15 μh/kg/min 4 > 12.0 [> 204] 4 

Coagulation  Kidney  

Platelets ×103/ml SOFA score Creatinine (mg/dl) 

[μmol/L] 

SOFA score 

> 150 0 < 1.2 [< 110] 0 

< 150 1 1.2–1.9 [110–170] 1 

< 100 2 2.0–3.4 [171–299] 2 

< 50 3 3.5–4.9 [300–440] 3 

< 20 4 > 5.0 4 

3.  Assumptions 

Our estimations of individual treatment effects depend on the following four standard assumptions in 

causal inference [15,16]. 
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3.1.  Assumptions 1: stable unit treatment value assumption (SUTVA) 

The designed treatment assigned to each group will not vary the potential outcomes for any other unit. 

This is necessary to ensure that the causal effect for each individual is stable. Each team has no different 

forms or versions of each treatment level, leading to various potential outcomes. Therefore, groups do 

not interact with each other. In our case, the results of a patient will not be influenced by other patients' 

outcomes. 

3.2.  Assumptions 2: ignorability 

Provided the historical observational data, the treatment given during period 𝑡 is entirely independent of 

the potential outcome of time 𝑡, i.e., 𝑌(𝐴𝑡) ⫫ 𝐴𝑡|𝑋𝑡, 𝐴𝑡−1, 𝑑 for all treatment assignments 𝐴𝑡. 

In our case, the assumption states that when two patients have the same covariates, their potential 

outcomes would be identical, independent of the treatment assignment. Additionally, if the two patients 

have similar covariates, their treatment assignment would be the same, independent of their possible 

outcomes. 

3.3.  Assumptions 3: positivity 

Provided the historical observational data, if ℙ(𝐴𝑡 = 1|𝑋𝑡 , 𝐴𝑡−1, 𝑑) ≠ 0, the probability of receiving 

treatment would be positive, i.e., 0 < ℙ(𝐴𝑡 = 1|𝑋𝑡 , 𝐴𝑡−1, 𝑑) < 1, for every 𝐴𝑡 . The combination of 

ignorability and the positivity assumptions is called Strongly Ignorable Treatment Assignment or Strong 

Ignorability. 

3.4.  Assumptions 4: consistency 

Generally, counterfactuals obey the following consistency rule: if 𝑋 = 𝑥, then 𝑌𝑥 = 𝑌. If 𝑋 is binary, 

then the consistency rule takes the convenient form: 𝑌 = 𝑋𝑌1+(1 − 𝑋)𝑌0, which can be interpreted as 

follows: 𝑌1  is equal to the observed value of 𝑌 whenever 𝑋 takes the value one. Symmetrically, 𝑌0 

equals the observed value of 𝑌  whenever 𝑋  is zero. In our research, the potential result under the 

treatment history 𝐴𝑡 would be identical to the observed outcome if the actual treatment history is 𝐴𝑡. 

4.  Methods 

4.1.  Inverse propensity score weighting (IPW) 

To tackle the obstacles of selection bias because of divergent distributions of the treated and the control 

groups, we introduce balancing matching and sample re-weighting, which are common ways to 

overcome this problem.  

Matching: Since some sort of confounder X makes it so that treated and untreated are not initially 

comparable, we can match each treated unit with a similar untreated team. It is similar to finding an 

untreated twin for every treated unit. Treated and untreated become comparable again through making 

such comparisons. We saw how to implement this method using the KNN algorithm and how to de-bias 

it using regression. 

If there is only a slight overlap in the propensity score between the treated and untreated groups, 

carrying out propensity score matching would be dangerous. Therefore, the discrepancy of propensity 

score matching will be significant, which can lead to bias. 

Another disadvantage of matching is that it is slow and time-consuming. Matching requires time to 

traverse and search for each distance to see who has recently filled the space above. Therefore, the 

matching efficiency is very low, many times lower than that of machine learning prediction methods. 

So how to improve is the focus of our research. 
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Figure 1. Structure of different re-weighting methods [16]. 

Re-weighting: Figure 2(a) displays the recorded initially data, including the blue-coloured speckles 

representing the control group and the red-coloured speckles representing the treated group. Notice an 

area where the confounders X1 and X2 are similar for both treated and untreated units. Figure 2(b) plots 

the observed data after re-weighting. The red dots (that are on the left side, with lower propensity scores, 

are assigned a highethanmpared to the original matching. Conversely, the blue dots (that are on the right 

side, with higher propensity scores, are assigned a higher weicomparedcomparing to the original 

matching. If there is little overlap between treated and untreated, it signifies that the two groups are very 

distinct, and we be will not able to extrapolate the effect between them. [15-17] 

 
(a) 

 
(b) 

Figure 2. (a) Illustration of the original data. (b) Illustration of the weights of units after re-weighting. 

Due to these weaknesses of balancing matching, we adopt the sample re-weighting to eliminate tWe 

aimr goal is to create a pseudo-population for cases when the distributions of the treated andgroupsrol 

group are not greatly ifferent, and by assigning the appropriate weight to each unit of samples in the 

observation dataset. Thmini-batchesi batches are built to imitate the corresponding randomized 

controlled trial (RCT) process (i.e., the treatment groups are randomly split. Also, the patient distribution 

in each group is balanced.) Therefore, we can convert an observational study into a pseudo-randomized 

trial by re-weighting samples, using the propensity score of the treatment they received. 
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We illustrate the process in Figure 2. Here, before re-weighting the samples, we estimate the 

propensity scores that represent the conditional probability of receiving the treatment at timestamp 𝑡 +
𝑗 given information up to the current period:  

 𝑃𝑆𝑗(𝑋𝑡) = ℙ(𝐴𝑡+𝑗 = 1|𝑋𝑡 , 𝐴𝑡 , 𝑑)  for  𝑗 = 1,2, … , ζ (2) 

Here, 𝐴𝑡+𝑗 denotes a possible treatment assignment at timestamp 𝑡 + 𝑗. We use a pre-trained model 

to calculate the propensity scores for patients in the training set. 

Then, we use the inverse propensity score weighting to re-weight the sample and estimate the 

individual treatment effect as follows: 

 𝛿𝑗
𝐼𝑃𝑊 = 𝔼 [

𝑌𝑡+𝑗 ∙ 𝐴𝑡+𝑗

𝑃𝑆𝑗(𝑋𝑡)
|𝑋𝑡 , 𝐴𝑡 , 𝑑] − 𝔼 [

𝑌𝑡+𝑗 ∙ (1−𝐴𝑡+𝑗)

1−𝑃𝑆𝑗(𝑋𝑡)
|𝑋𝑡, 𝐴𝑡 , 𝑑] (3) 

Notice that this estimator requires the propensity score to be nonzero (positive), which means that 

each patient has at least some possibility of receiving and not receiving the treatment. Namely, the 

treated and control distributions need to be overlapped. This positivity assumption of causal inference 

is introduced above in Assumption 3. 

According to theoretical results, adjusting the scalar propensity score can eliminate bias based on 

most observed covariates. Yet, IPW's accuracy relies heavily on the accuracy of propensity scores. 

4.2.  Doubly Robust (DR) or augmented IPW 

As described in the previous section, balance matching is not preferred in the study of time-to-treatment 

observational studies because of its disadvantages: time-consuming and low efficiency. We adopted 

doubly robust (DR) into our model for debiasing. The doubly robust estimator is also called Augmented 

IPW (AIPW) since the concept of DR is to combine the inverse propensity score weighting with the 

outcome regression. [16-21]  

𝛿𝑗
𝐷𝑅 =  𝔼 [�̂�𝑡+𝑗(𝐴𝑡+𝑗 = 1) +

(𝑌𝑡+𝑗 − �̂�𝑡+𝑗(𝐴𝑡+𝑗 = 1)) ∙ 𝐴𝑡+𝑗

𝑃𝑆𝑗(�̅�𝑡)
|𝑋𝑡, 𝐴𝑡 , 𝑑] 

−𝔼 [�̂�𝑡+𝑗(𝐴𝑡+𝑗 = 0) +
(𝑌𝑡+𝑗 − �̂�𝑡+𝑗(𝐴𝑡+𝑗 = 0)) ∙ (1 − 𝐴𝑡+𝑗)

1 − 𝑃𝑆𝑗(�̅�𝑡)
|𝑋𝑡, 𝐴𝑡 , 𝑑]                           (4) 

Notice that the DR model consists of two statistical models. In our case, the first is a propensity score 

model that estimates the probability of receiving antibiotics based on observed covariates. The second 

model is an outcome regression model that estimates the conditional expectation of the outcome (e.g., 

survival or recovery) given the treatment and observed covariates. 

 
 

Figure 3. Illustration of combining IPW and outcome regression. 

The propensity score calculated by the model and expected to balance the baseline covariates between 
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the time-to-treatment from antibiotics and the control groups in the observational study. Moreover, the 

propensity scores represent the likelihood of receiving the treatment based on the covariates, such as the 

severity of syndromes. Then, the algorithm uses the propensity score to balance the distribution of the 

covariates between the treated and the untreated groups. A doubly robust estimator would be unbiased 

when the propensity score estimation or the outcome regression is correct. 

 
Figure 4. Procedure of Doubly Robust [16]. 

5.  Results 

5.1.  Model performance 

 

 
(a)                                                                                 (b) 

Figure 5. (a) 30-day mortality rate comparison (b) 60-day mortality rate comparison. 

As shown in Figures 5(a) and 5(b), we calculated and compared the 30-day and 60-day mortality rates. 

In Figures 5(a) and 5(b), the left data represents patients taking actual treatments, and the right represents 

patients taking model-recommended medicines. We found that patients receiving treatment at 

timestamps that are not recommended had higher average mortality rates. Patients receiving treatment 

with the identical recommended timestamps had lower overall mortality rates. We evaluated models for 

different follow-up periods        (i.e., ζ ∈ {1,2,3,…}). For 60-day mortality rate, there is no significant 

difference compared to the 30-day mortality rate, with almost the same mortality rate at all timestamps. 

Overall, the mortality rate of patients under actual treatments is higher than that of patients under model-

recommended treatments. The outcomes indicate that our model recommends effective treatment 

assignment, as reflected by the mortality rate and estimates when doctors should decide to give 

antibiotics to patients with sepsis. This proves our model's robustness to be applied to various datasets 

with distinct characteristic distributions. 
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5.2.  Individual analysis 

To explain in detail how our model is based on ITE estimation to recommend antibiotics, we used a 

real-world patient case and predicted the data as shown in Figure 6: 

 

Figure 6. SOFA score and ITE prediction. 

As shown in Figure 6, we use the predicted ITEs as the criteria for antibiotic assignment 

recommendation. To be precise, we recommend antibiotics at each timestamp 𝒋 if the ITE is lower than 

zero (�̂�𝒋 < 𝟎), which means the predicted SOFA score for 𝑻 = 𝟏 is lower than the accurate SOFA score 

for 𝑻 = 𝟎. We will not recommend if the predicted ITE is more significant than zero (�̂�𝒋 > 𝟎), where 

zero is the border that represents no difference between whether to take antibiotics or not (�̂�𝒋 = 𝟎). 

In the case of a specific patient, illustrated by Figure 6, the predicted ITE is negative for 𝟎 < 𝒋 < 𝟓 

in the follow-up period. In contrast, the predicted SOFA values are much lower than the actual SOFA 

values at the recommended time of antibiotics. Therefore, the optimal treatment recommendation of our 

model is to take antibiotics before 𝒋 = 𝟓 and stop the antibiotic after 𝒋 = 𝟓. Our model can identify 

adequate periods of antibiotic assignment for septic patients to relieve their conditions while lowering 

mortality. 

5.3.  Case study with variables contribution 

The Spearman rank correlation coefficient, 𝜌, is the Pearson correlation coefficient between hierarchical 

variables [22,23], a nonparametric correlation measure based on data ranks. It uses a monotone equation 

to evaluate the associations between two status variables. The value of the Spearman coefficient lies in 

the range of +1 to -1 where, 

• A perfect association of rank is indicated by a 𝜌 value of +1. 

• Zero association of ranks is indicated by a 𝜌 value of 0. 

• A perfect negative association of class is characterized by a 𝜌 value of -1. 

When the 𝜌 value is closer to 0, the association between the two levels becomes weaker. 

For samples with a size of 𝑛 , 𝑛  raw data are converted into hierarchical data, with correlation 

coefficients  𝜌 by 
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 𝜌 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑖

√∑ (𝑥𝑖−𝑥)2
𝑖 ∑ (𝑦𝑖−𝑦)2

𝑖
 (5) 

Therefore, we visualize variable-level contribution in Figure 7. The following heat map is obtained 

by analyzing the relationship between the above variables. Here, the variables include the vital signs 

(temperature and respiratory rate) and the lab tests (glucose, potassium, sodium, blood urea nitrogen 

(BUN), anion gap, and platelet); the static covariates include gender and age. 

 

Figure 7. Heat map for the correlation of the variables. 

Figure 7 shows the value of the correlation coefficient in the form of a heat map, mainly indicating 

the size of the matter through color depth. This suggests that the correlation of most variables is weak, 

while a small number of variables have a specific correlation. Within a controllable range, there is almost 

no mutual influence between variables, and the research is reliable. 

6.  Discussion 

In this paper, we show how reinforcement learning can solve complicated medical problems and suggest 

personalized treatment plans for sepsis that doctors can understand. In a different group, patients who 

got the treatment plan recommended by AI had the lowest death rate. 

When a doctor's treatment differs from what AI recommends, the common problem is that too few 

vasopressor drugs are used. Excessive infusion is also associated with a poor prognosis. Early use of 

low-dose vasopressors is considered adequate for sepsis. Our research supports these strategies, but 

more importantly, it allows treatment to be personalized for each patient. 

Physicians often need to make subjective clinical judgments about treatment strategies. Nevertheless, 

computer models can give more information about choosing the best design, like avoiding antibiotic 

resistance and focusing on long-term survival. The reinforcement learning method we made does not 

care what kind of data is used so it can be used in any clinical setting with many data and for many 

medical interventions. With the development of omics technology, AI physicians can add information 

to improve status definitions and guide more treatment in selected patient groups. Different kinds of 

information about patients will be fed into the electronic health record software with our algorithm, 

which will then suggest several ways to help the patient. This system can be utilized in real-time. 

However, our research could be improved. Although our dataset is extensive and consists of routinely 

collected clinical data, some locations and patients must be excluded due to poor quality data records or 

missing data. Finally, some experimental medical values are not immediately available to clinicians 

when making decisions but are available to AI. 
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Medical workers should test in different healthcare settings and make decisions based on real-time 

clinical cases and data. However, lowering the death rate of septic patients by a small amount could save 

the lives of thousands of people worldwide every year. In the past 10–15 years, attempts to develop new 

treatment strategies to reduce mortality from sepsis have been unsuccessful. Using computerized 

decision-making systems to guide treatment better and improve prognosis is a much-needed method. 

7.  Conclusion 

The primary way for IPW to adjust confounders is to balance confounders at different treatment levels 

with treatment weight. In our model, we applied a pseudo population to different treatment application 

trajectories where all measured confounders are balanced between other treatment groups. The obtained 

data meet the requirements of absolute randomized controlled trials. Therefore, causal inference can be 

made by comparing groups through t-tests. 

Applying stable inverse probability weighted censoring to all models addresses potential selection 

biases due to missing data and missed visits. Results that can be generalized to the initial target patient 

are provided. The application of weighting can alleviate the bias caused by this nonrandom selection 

and deletion so that results with a subset of complete data and follow-up can be generalized to the initial 

goal. IPW can only handle data loss situations that can be predicted using observed information.  

Because of its unique characteristic, the Doubly Robust estimator allows a more rigorous analysis of 

observational data of the patients by detecting the potential factors that might change the outcomes. 

However, if the lack of data depends on the future time of the results, which is unobservable, then this 

dependency can only be captured reliably by making speculative assumptions. Thus, it is best to use 

stable weights when using IPW since they have less variability and can therefore produce a more 

efficient estimation. 

By running the models, we have proved the hypothesis that by adopting the IPW method and the DR 

estimator, the recommended time-to-treatment processes can significantly decrease the mortality rate. 

More specifically, by analyzing both the 30-days and the 60-day mortality comparison graphs we 

recorded, it is evident that the model has concentrated the margin between patients under model-

recommended treatment and those under actual therapy to less than 3%.  

Nevertheless, improvements are still required to successfully facilitate the machine learning models 

and concepts in the practical treatment process of sepsis because there is still an area of progress in our 

research. With this being stated, multiple excellent causal inference techniques are developed by data 

scientists and will be tested in the future. 
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