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Underwater images typically suffer from low contrast, color distortion, and blurred
details caused by light absorption and scattering, which severely limit the performance of
visual perception tasks such as marine ecosystem monitoring, shipwreck inspection, and
autonomous underwater vehicle (AUV) navigation. Conventional physics-based restoration
methods are highly sensitive to water types and illumination conditions, thus lacking
robustness in practical scenarios. To overcome these limitations, we propose a deep
learning-based underwater image enhancement framework termed SimpleEnhanceNet,
which adopts an encoder—decoder convolutional neural network (CNN) with skip
connections. The network is trained on the public UIEB and EUVP datasets in a supervised
manner, where the optimization objective combines pixel-wise mean squared error with
perceptual loss to jointly preserve structural fidelity and perceptual quality. Extensive
experiments demonstrate that our method achieves superior performance over traditional
approaches on the UIEB benchmark, yielding improvements of 5.82 dB in peak signal-to-
noise ratio (PSNR) and 0.21 in structural similarity index (SSIM). Moreover, the no-
reference metrics UIQM and UCIQE also exhibit substantial gains. Qualitative comparisons
confirm that SimpleEnhanceNet effectively restores natural colors and enhances scene
clarity across diverse underwater conditions. These results highlight its potential for real-

time deployment in AUV navigation, environmental monitoring, and marine exploration.
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Underwater images serve as a crucial source of information for marine science and engineering
applications, playing an essential role in tasks such as marine ecosystem monitoring, shipwreck and
coral reef inspection, environmental protection, and autonomous underwater vehicle (AUV)
navigation. However, due to the absorption and scattering of light in water, underwater images often
suffer from degradations such as low contrast, color distortion, and blurred details. Such quality
degradation not only hinders the visual perception and interpretation for human observers but also
limits the reliability and robustness of computer vision algorithms in underwater scenarios.
Therefore, enhancing the quality of underwater images remains a fundamental and challenging

problem in underwater visual perception.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Traditional underwater image enhancement approaches are mostly based on physical imaging
models or color correction priors, such as histogram equalization, white balance adjustment, dark
channel prior, and optical propagation-based restoration methods [1]. However, these approaches are
highly sensitive to water conditions and illumination environments, often leading to over-
enhancement or under-enhancement in complex underwater scenarios, thereby lacking robustness.
With the rapid development of deep learning, convolutional neural networks (CNNs) have been
widely applied to underwater image enhancement tasks [2]. Among them, encoder—decoder
architectures represented by U-Net can effectively integrate local and global features. Nevertheless,
existing U-Net-based methods still suffer from several limitations when applied to diverse
underwater environments: on the one hand, their feature modeling capacity is insufficient to adapt to
degradations caused by varying water depths and turbidity; on the other hand, most methods rely
solely on pixel-level loss functions, making the enhanced results prone to unnatural color
reproduction or missing details.

To overcome the aforementioned limitations, several improved approaches have been proposed.
Chen et al. enhanced the Water-Net model by refining the enhancement units and applying Softmax
to calibrate the confidence map output, thereby improving the model’s robustness [3]. Yang et al.
introduced the F-GAN model based on generative adversarial networks for underwater image color
correction, employing a multi-objective function to supervise the training process and evaluate
image quality [4]. Jamieson et al. proposed the DeepSeeColor model, which combines depth
estimation with physical modeling to correct degradations under varying water depth conditions [5].
Peng et al. incorporated the Transformer model into underwater image enhancement, leveraging
multi-scale feature fusion and global feature modeling to improve the network’s attention to severely
attenuated color channels [6].

Although existing methods have achieved progress in various aspects, several challenges remain.
First, cross-dataset generalization is insufficient, and the model’s performance varies significantly
under different water quality conditions. Second, it is difficult to balance structural fidelity with
perceptual visual quality; some methods produce natural colors but lack detail sharpness. Third,
certain network architectures are complex and fail to meet real-time requirements, limiting their
deployment on embedded platforms such as AUVs [7]. Therefore, designing lightweight, efficient,
and generalizable deep models remains a critical research direction in the field of underwater image
enhancement.

To address the aforementioned issues, this paper proposes a deep learning-based method for
underwater image enhancement. The method employs an encoder—decoder convolutional network
with skip connections and is trained in a supervised manner on the publicly available UIEB and
EUVP datasets[8—9]. The loss function integrates pixel-wise mean squared error and perceptual loss
to simultaneously improve structural fidelity and perceptual visual quality. Experimental results
demonstrate that the proposed method significantly outperforms traditional approaches in both full-
reference metrics such as PSNR and SSIM, and no-reference metrics including UIQM and UCIQE,
achieving more natural color restoration and enhanced clarity across various complex underwater
scenarios.

The main contributions of this work are summarized as follows: First, a lightweight encoder—
decoder network is designed to address the diverse degradation characteristics of underwater
images, employing skip connections to achieve multi-scale feature fusion. Second, an optimization
objective combining pixel-wise loss and perceptual loss is constructed to enhance perceptual visual
quality while maintaining structural consistency. Third, systematic experiments are conducted on the
UIEB and EUVP datasets, showing that the proposed method outperforms existing traditional
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approaches in both quantitative and qualitative evaluations, demonstrating strong generalization and
application potential. The remainder of this paper is organized as follows: Section 2 reviews
underwater image enhancement and related research progress; Section 3 presents the network
architecture and training strategy of the proposed method; Section 4 details the experimental setup
and results analysis; Section 5 concludes the paper and provides discussion.

With the application of deep learning in underwater image enhancement, convolutional neural
networks (CNNs) based on encoder—decoder structures have become the mainstream paradigm. By
progressively downsampling to extract semantic features and then upsampling to restore spatial
resolution, these networks can simultaneously improve local details and global structures in an end-
to-end training manner. Based on this approach, Li et al. proposed Water-Net, which generates
multiple candidate enhanced images through preprocessing methods such as white balancing and
histogram equalization, and learns corresponding confidence maps for weighted fusion, achieving
robust color restoration on real underwater images [8]. The Ucolor network integrates multiple
color-space encoders with a medium-transmission-based decoder, adaptively fusing different
features via an attention mechanism, significantly improving enhancement for color casts and low-
contrast images [10]. In addition, lightweight CNN designs have been proposed to reduce
computational cost while maintaining enhancement quality, making them suitable for embedded
platforms such as underwater robots. For example, Yang et al. proposed LU2Net, which employs
axial depthwise convolutions and channel attention modules to significantly reduce computational
demands and model parameters, thereby improving processing speed [11]. However, despite their
advantages in local detail recovery and efficient inference, CNN-based methods still face challenges
due to the limited receptive field of convolutional operators, making it difficult to model long-range
color shifts and non-uniform degradations, and their generalization across varying water quality and
depth conditions remains limited.

Feature fusion and skip connection mechanisms are core designs in underwater image enhancement
networks. Regarding skip connections, the low-level features from the encoder are directly passed to
the corresponding scales of the decoder, preventing information loss through layer-by-layer
processing and enhancing the detail recovery of high-level semantic features during reconstruction.
Gao et al. proposed a U-shaped network with skip connections to hierarchically capture multi-scale
information for underwater polarimetric dehazing, reducing data pre-processing and floating-point
computations, while improving the preservation of edge and texture details during reconstruction
[12]. For multi-scale feature fusion, information from different feature levels is combined to balance
local details and global color distribution. Xu et al. proposed a GAN-based underwater image
enhancement network that leverages multi-scale feature fusion within the generator to integrate
hierarchical representations from different layers. This design allows the network to simultaneously
capture global color consistency and local texture details, thereby improving the overall perceptual
quality of enhanced underwater images [13]. Additionally, attention mechanisms have been
increasingly incorporated, with channel and spatial attention enhancing the network’s focus on key
regions, effectively restoring color and contrast in complex environments. For example, Peng et al.
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proposed the U-shape Transformer, which incorporates channel attention modules at each layer of
the encoder and decoder to assign weights according to the importance of different channels.
Simultaneously, spatial attention modules generate saliency maps to highlight foreground regions
and edge structures. During the multi-scale feature fusion process, these attention mechanisms guide
the network to more accurately restore regions with severe color deviation while preserving image
texture details, thereby significantly enhancing both color correction and visual clarity of the
enhanced images [6]. Although these fusion strategies significantly improve enhancement
performance, they also increase model complexity and training difficulty, posing challenges for
resource-constrained embedded platforms and real-time applications.

In underwater image enhancement, the design of network training objectives has a critical impact on
enhancement performance. Traditional pixel-wise reconstruction losses ensure structural consistency
but often result in overly smooth outputs with insufficient texture details. By introducing perceptual
loss, adversarial loss, and multi-objective training strategies, both structural fidelity and perceptual
visual quality can be improved. Perceptual loss is typically computed based on high-level feature
differences extracted from pre-trained networks such as VGG [14], measuring the discrepancy
between enhanced and reference image features to optimize the network’s ability to restore textures
and colors. Adversarial loss, leveraged within a generative adversarial network framework,
constrains the generated images to resemble real distributions, further enhancing perceptual realism
[9]. Multi-objective training strategies integrate pixel-wise reconstruction loss, perceptual loss,
adversarial loss, and color consistency constraints, enabling the network to maintain structural
fidelity and visual perception under various degradation conditions. During training, both full-
reference and no-reference quality metrics are used for evaluation and hyperparameter tuning,
quantifying color naturalness, sharpness, and contrast [15]. In summary, careful design of loss
functions and training strategies is essential for improving perceptual quality and cross-domain
generalization. The proposed method introduces an improved skip-fusion module and perceptually
guided training objectives within a lightweight encoder—decoder network, effectively balancing
structural fidelity and visual quality.

The proposed underwater image enhancement network employs a lightweight encoder—decoder
convolutional neural network backbone to meet real-time processing requirements on resource-
constrained platforms such as AUVs and ROVs. The encoder progressively downsamples the input
image to extract multi-level semantic representations, with shallow layers focusing on edges and
textures, and deeper layers capturing global semantics and degradation patterns. The decoder
progressively upsamples to restore spatial resolution, integrating key information from the encoder
at each scale during reconstruction, ultimately producing the enhanced image.

To prevent detail loss caused by unidirectional upsampling, skip connections are established
between aligned scales of the encoder and decoder. Traditional symmetric skip connections directly
concatenate encoder and decoder features at the same scale, which can supplement high-frequency
details but often introduces unstable color casts and noise into the decoder in underwater scenarios.
To address this issue, the proposed model inserts a lightweight channel-spatial attention module
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before each skip connection. Specifically, in the channel dimension, global average pooling is
applied to aggregate channel statistics, followed by a 1x1 convolution and Sigmoid activation to
generate channel weights. In the spatial dimension, a local convolution-based saliency map
suppresses background and regions with strong scattering, highlighting structural edges and
foreground areas. Features processed by this module are then fused with decoder features, enhancing
detail consistency and reconstructability while reducing artifacts and oversaturation in severely
degraded regions.

All convolutional layers in the network use 3x3 kernels with ReLU activation to ensure nonlinear
representation capability. Upsampling is performed through a combination of bilinear interpolation
and convolution to reduce artifacts. This lightweight design controls the number of parameters and
computational complexity, ensuring network adaptability and robustness while facilitating
deployment on embedded platforms.

For non-uniform illumination attenuation and channel-dependent color shifts in underwater images,
single-scale features are insufficient to balance global consistency and local detail recovery. To
address this, the proposed model introduces a weighted fusion strategy based on multi-level outputs
from the encoder. Specifically, feature maps are extracted from shallow, intermediate, and deep
layers, and a lightweight channel attention module is used to estimate response weights for each
scale. The weighted multi-scale features are then concatenated along the channel dimension to form
fused features, which are subsequently injected into the decoder branch to participate in progressive
reconstruction.

This process implements a stepwise information flow of selection—aggregation—reconstruction:
selection suppresses channels heavily affected by scattering noise; aggregation integrates global and
local cues within a unified representation space; reconstruction explicitly guides the joint recovery
of edges and colors during upsampling. Based on the multi-scale perception and multi-dimensional
spatial fusion concept [13], the model further emphasizes lightweight implementation: the attention
module consists of 1x1 convolutions and per-channel normalization without introducing global self-
attention computation, thereby reducing inference cost while maintaining enhancement quality.

To balance structural fidelity and perceptual quality, this work adopts a dual-objective optimization
strategy combining pixel reconstruction loss and perceptual loss. The overall objective can be
expressed as:

L= >\1Lpixel + }‘2Lperc (1)
where A; and Ay are the weights for pixel and perceptual losses, respectively.

The pixel reconstruction loss uses mean squared error (MSE) to constrain the difference between
the enhanced image and the reference image at the pixel level:

- 2
Lixel = g7 |1 — I*1l5 2)
where I and I* denote the enhanced and reference images, respectively, and H and W denote

the height and width of the image, respectively.
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To overcome over-smoothing and texture loss associated with pixel-level metrics, perceptual loss
is introduced, based on high-level feature representations extracted from a pre-trained VGG

network:
() - (1) ®

where ¢,() denotes the feature map of the £ -th VGG layer, and C,,H,, W, are the

corresponding channel, height, and width of the feature map.
The loss weights A; and A, are determined via grid search on the validation set to ensure that

both full-reference and no-reference metrics benefit simultaneously.

_ 1
Lperc - 2( CHW/,

To evaluate the performance of the proposed underwater image enhancement network in terms of
structural fidelity, texture detail recovery, and color naturalness, the UIEB [8] and EUVP [9] datasets
are employed for training and testing.

The UIEB dataset contains 890 real underwater images, of which 800 images are used for
training and 90 images with expert-provided reference images are used for testing and evaluation.
This dataset covers various water bodies and lighting conditions and is one of the most commonly
used benchmarks for supervised learning scenarios. The EUVP dataset consists of over 20k real and
synthetic underwater images, including paired low- and high-quality images, enabling evaluation of
model generalization under diverse water conditions.

In the experiments, the UIEB dataset is used for training and quantitative evaluation, while the
EUVP dataset serves as an additional cross-dataset test to validate the model’s generalization
capability.

All training and testing experiments were conducted on a local workstation equipped with a 13th
Gen Intel(R) Core(TM) 19-13900HX CPU and an NVIDIA GeForce RTX 4060 Laptop GPU, using
the PyTorch deep learning framework. During training, the Adam optimizer was employed with an
initial learning rate of 1107, decayed at fixed intervals during mid-training. The batch size was set
to 4, and training proceeded for a total of 100 epochs. Input images were uniformly resized to
256x256 pixels and normalized to the [0,1] range. To enhance network robustness, data
augmentation strategies such as random horizontal flipping and random cropping were applied. The
training loss function followed the joint objective of pixel reconstruction loss and perceptual loss
described in Section 3.3.

Quantitative evaluation was conducted using a combination of full-reference and no-reference
metrics.

Full-reference metrics include peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [15]. PSNR measures the pixel-level closeness between the enhanced and reference images,
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with higher values indicating lower distortion. SSIM assesses structural and textural similarity,
ranging from 0 to 1, where higher values indicate better structural fidelity.

No-reference metrics include the Underwater Image Quality Measure (UIQM) and the
Underwater Color Image Quality Evaluation (UCIQE). UIQM evaluates image quality
comprehensively from color fidelity, contrast, and sharpness, with higher values indicating better
quality. UCIQE, based on color deviation, saturation, and contrast, effectively reflects the perceptual
visual quality of underwater images.

This combination of full-reference and no-reference metrics ensures that the evaluation captures
both structural accuracy and perceptual improvement.

To validate the effectiveness of the proposed method, several traditional enhancement methods
were selected for comparison. In the experiments, the groups are defined as follows: Raw (RAW)
refers to the original unenhanced images for visual comparison; Histogram Equalization (HE)
enhances contrast by stretching the grayscale histogram but may cause color distortion and over-
enhancement in complex underwater environments; the proposed method (SimpleEnhanceNet)
employs a lightweight encoder—decoder network with multi-scale feature fusion for image
enhancement; Reference denotes high-quality images manually processed by experts, representing
the theoretical upper bound.

The comparative results of different methods on the UIEB test set are presented in Table 1.

Table 1. Comparison of different methods

Method PSNR? SSIM1 18] (0)\% ) UCIQE?
Raw 14.32 0.45 2.41 48.5
HE 15.21 0.47 2.53 50.2
SimpleEnhanceNet 20.14 0.68 3.02 56.7

The experimental results show that the proposed method achieves approximately 5 dB and 0.21
improvements over the traditional histogram equalization approach in PSNR and SSIM,
respectively, and also demonstrates significant advantages in UIQM and UCIQE. This indicates that
the proposed method outperforms conventional techniques in both structural fidelity and perceptual
visual quality.

As shown in Table 2, further testing on the EUVP dataset shows that the method maintains strong
enhancement performance in unsupervised scenarios, particularly for images with bluish-green color
casts and low illumination, demonstrating good generalization. These results suggest that the
proposed lightweight network architecture and loss design possess notable cross-domain
adaptability.

Table 2. Cross-dataset generalization results on EUVP

Method PSNR? SSIM? UIQM1 UCIQE?
Raw 13.85 0.42 2.36 479
HE 14.72 0.45 2.48 49.6
SimpleEnhanceNet 18.94 0.64 291 55.1

Reference 23.50 0.80 342 57.3
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5. Conclusion and discussion

To address the common issues of illumination attenuation and color shift in underwater images, this
paper proposes a lightweight underwater image enhancement network, aiming to achieve a balance
between quality restoration and computational efficiency. The method is based on an encoder—
decoder convolutional architecture, incorporates skip connections and lightweight channel attention
modules, and employs joint optimization of pixel reconstruction loss and perceptual loss, effectively
addressing the shortcomings of traditional methods in texture preservation and color restoration.
Extensive experiments comparing the proposed method with other approaches show that it achieves
excellent performance on the publicly available UIEB and EUVP underwater image enhancement
benchmark datasets. The method not only outperforms traditional techniques such as histogram
equalization in full-reference metrics (PSNR, SSIM) but also achieves significant improvements in
no-reference metrics (UIQM, UCIQE), further validating its applicability and robustness in real-
world scenarios. Despite these advances, several directions remain for further exploration. For
example, the current loss functions mainly combine pixel reconstruction and perceptual constraints,
and adversarial loss could be introduced to further enhance optimization of perceptual quality. In
addition, the model’s training relies on paired reference data, and its cross-domain generalization
still requires further improvement. Future research will focus on the following three aspects:
structural optimization by integrating multi-scale fusion and attention mechanisms to enhance the
model’s representation of complex degradation patterns; reducing reliance on reference data through
unsupervised and self-supervised learning to improve adaptability under different water quality and
lighting conditions; and multi-task and multi-modal extensions, combining underwater object
detection, segmentation, and recognition tasks to explore cross-modal information fusion and
enhance overall perceptual capability.
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