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Abstract.  Because pneumonia incidence remains high and traditional diagnostic methods
face efficiency bottlenecks, and since convolutional neural networks are increasingly applied
in medical image analysis, this paper employs the AlexNet model to analyze chest X-ray
images for pneumonia detection. The study optimizes the training process by tuning the
number of epochs to identify the model with the best accuracy. Experimental results show
that the model achieved an accuracy of 0.8108 (81.08%), demonstrating good capability for
recognizing pneumonia in X-ray images. This method can help reduce the bias and time
required by manual interpretation, effectively improve the efficiency of pneumonia
screening, and gain valuable time for timely diagnosis and treatment.
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1. Introduction

Pneumonia is a lung infection caused by bacteria, viruses, or other microorganisms. It is a common
clinical disease that predominantly occurs among the elderly and children. In the field of medical
image analysis, traditional diagnostic methods rely heavily on manual feature extraction and expert
experience, which are limited by strong subjectivity and high individual variability.

In recent years, with the advancement of deep learning technologies—particularly convolutional
neural networks (CNNs), one of the core models in the field—CNNs have gradually become the
foundation of image recognition and computer vision. Owing to their three main features—local
connectivity, weight sharing, and spatial subsampling—CNNs can effectively process medical
images, injecting revolutionary momentum into medical image analysis. Against this background,
this study establishes a deep learning environment, builds a neural network model using a
pneumonia dataset, and conducts experiments. The results demonstrate that the proposed method is
effective in pneumonia detection.

This paper is organized into six sections: Introduction, Literature Review, Methodology, Results,
Discussion, and Conclusion. The Introduction highlights the high incidence of pneumonia and the
efficiency bottlenecks of traditional diagnosis, while also outlining the application background of
CNNs in medical image analysis, thereby laying both the practical and technical foundation for this
research. The Literature Review systematically examines the extensive applications of CNNs in the
medical field in recent years, clarifying the technical context and frontiers of the study. The
Methodology section not only explains the basic principles of CNNs but also provides a detailed
account of the AlexNet architecture employed in this research, offering theoretical and technical
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support for experimental design. The Results section describes the composition of the dataset, key
parameter settings, and the accuracy variations of the model under different epoch values. The
Discussion section engages in an in-depth analysis of central issues in the research design, including
the rationale for selecting this model, the suitability of the dataset, the role of the flatten and dropout
layers in the convolutional network, the function of normalization in data preprocessing, and the
observed trends of experimental performance across different epochs. Finally, the Conclusion
summarizes the study, objectively points out its limitations, and proposes directions for future
optimization.

2. Literature review

Convolutional neural networks (CNNs) play a key role in medical image recognition and detection.
In recent years, their applications in the medical field have continued to deepen and have been
widely implemented in practice. Researchers have developed and applied various CNN architectures
for medical image analysis tasks, including basic CNN and improved classification networks, U-
shaped and variant segmentation networks, 3D convolutional networks, lightweight networks, and
attention-mechanism-based fusion networks.

Basic CNN and improved classification networks. Built upon classical CNN architectures, these
models enhance performance in medical image classification tasks by optimizing loss functions,
introducing feature enhancement strategies, or employing transfer learning. For example, Kun Hao
et al. proposed a novel cost function—weighted Fisher criterion—and applied it to a CNN model for
breast cancer detection, achieving an F1-score of 0.920 and demonstrating excellent performance
[1]. Later, Xiaomei Shen et al. optimized CNN feature extraction modules for salivary gland tumor
ultrasound images, combining gamma transformation with bilateral filtering to enhance texture
features, thereby achieving an accuracy of 85.44% and a sensitivity of 86.67%, which reduced
unnecessary fine-needle biopsies [2]. Xin Song et al. proposed a hybrid intelligent classification
model combining CNN and k-nearest neighbors (KNN). By using transfer learning to optimize
parameters, the model achieved an F1-score of 94.61% and an accuracy of 94.73% in sickle cell
disease (SCD) image classification, enabling efficient automatic SCD recognition [3].

U-shaped networks and their variants. Centered on the “encoder–decoder with skip connections”
architecture, these models improve segmentation accuracy through feature fusion and have become
the mainstream method in medical image segmentation. Runhua Shao et al. improved U-Net by
introducing an attention-guided connection (AGC) module, which increased the Intersection over
Union (IoU) by 5.4% on the PAIP-2019 dataset. With multi-scale dilated convolution for cross-level
feature fusion, the model achieved a Dice coefficient of 0.863, significantly enhancing tumor region
segmentation [4]. Panpan Liu et al. proposed a novel asymmetric U-shaped CNN, ASUNet, which
achieved Dice scores of 77.08%, 90.83%, and 83.41% for enhancing tumor (ET), whole tumor
(WT), and tumor core (TC) regions, respectively, on the BraTS 2020 dataset, with a Hausdorff
distance as low as 4.92 mm [5]. Xiaoqin Wu et al. combined U-Net with the watershed algorithm for
brain tumor segmentation, achieving an accuracy of 0.896 and specificity of 0.9888, effectively
addressing the edge-blurring problem of U-Net [6].

3D convolutional networks. By applying three-dimensional convolution operations, these models
capture volumetric spatial information and better model lesion morphology. Qiwei Cao et al.
proposed a method based on 3D multi-pooling CNN, which integrates multi-scale input and
downsampling strategies with conditional random fields (CRF) for boundary optimization. On 100
multimodal MRI brain tumor segmentation cases, the model achieved a Dice coefficient of 91.64%,
effectively accommodating tumor size variations across image slices [7]. Lijun Xu et al. developed a
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3D-Ghost convolution module based on 3D U-Net, which reduces redundant features via linear
operations, and incorporated a 3D coordinate attention module to enhance spatial awareness. On the
BraTS 2018 dataset, Dice scores for WT, TC, and ET regions reached 0.8632, 0.8473, and 0.8036,
respectively, with a significant reduction in model parameters [8]. Fei Chen et al. built upon the 3D
V-Net framework by introducing a CoordConv layer to fuse image and coordinate information,
combined with a semi-supervised Mean Teachers strategy to leverage unlabeled data. In pancreatic
tumor segmentation, the model achieved a tumor Dice score of 0.722 ± 0.290 and a Kappa
coefficient of 0.746, enabling precise segmentation of pancreatic head–neck, body–tail, and tumor
regions [9].

Lightweight networks. These models optimize convolution operations and reduce parameters,
achieving higher computational efficiency without sacrificing accuracy. Gang Pei et al. improved the
U-shaped architecture by replacing bottleneck convolutions with linear mapping and attention
mechanisms, introducing a lightweight multilayer perceptron (Tok-MLP) for positional information
learning, and enlarging the receptive field using dilated convolution. Additionally, gated attention
was incorporated into skip connections to enhance feature propagation. The proposed model
outperformed mainstream algorithms on the BUSI and ISIC2018 datasets in Dice scores, while
requiring only 0.74M parameters and 0.40G FLOPs, achieving a balance between segmentation
performance and computational efficiency [10].

Attention-mechanism fusion networks. By integrating attention modules, these networks improve
focus on key features and effectively suppress noise interference. Taojie Zhang et al. proposed
ECENet, which prunes the CHRNet architecture to optimize network structure, incorporates the
SKSAM attention module (combining channel and spatial attention), and employs a context-aware
fusion block (CoFusion) for multi-scale output integration. On blurry skeletal images, ECENet
achieved an ODS of 0.816 and OIS of 0.823, with peak signal-to-noise ratio (PSNR) improved by
16.8% and structural similarity index (SSIM) improved by 37.6% [11].

3. Methodology

3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically designed
for structured data processing and are widely applied in image recognition, object detection, and
related domains. CNNs consist of multiple hierarchical layers, the most common of which include
the input layer, convolutional layers, pooling layers, fully connected layers, and the output layer.

The convolutional layer extracts local features from the input data through convolution
operations. Each convolutional layer contains multiple convolution kernels (filters), each of which
can be regarded as a linear function composed of weights and bias. The basic principle of
convolution layers is to generate feature maps of the input data via kernel-based convolution
operations. The computation can be generally expressed as:

(1)

where     represents the weights of the convolution kernel, b the bias, x the input feature map,
and y the output feature map.

The pooling layer performs downsampling on the feature maps produced by convolution layers,
thereby reducing the number of parameters and compressing computations. This helps mitigate
overfitting. Common pooling strategies include average pooling and max pooling. Average pooling

y(i, j) = ∑k
m=1 ∑

k
n=1 ωm,n × x(i + m, j + n) + b

ωm,n
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computes the mean value within a receptive region, whereas max pooling selects the maximum
value. In this study, max pooling layers are employed.

The fully connected layer connects each node to all nodes in the preceding layer, integrating the
extracted features into a final classification decision. In CNNs, fully connected layers transform
extracted image features into a one-dimensional vector. The computation of a fully connected layer
can be expressed as:

(2)

3.2. Alexnet

AlexNet was proposed in 2012 by Krizhevsky and colleagues at the University of Toronto [12]. The
network is composed of five convolutional layers, three max-pooling layers, and three fully
connected layers.

Table 1. Architecture of AlexNet

Layer Hyperparameters

Convolutional Filter=(11,11), Stride=4, Padding=0
Max Pooling Kernel size=(3,3), Stride=2

Convolutional Filter=(5,5), Stride=1, Padding=2
Max Pooling Kernel size=(3, 3), Stride=2

Convolutional Filter=(3, 3), Stride=1, Padding=1
Convolutional Filter=(3, 3), Stride=1, Padding=1
Convolutional Filter=(3, 3), Stride=1, Padding=1
Max Pooling Kernel size=(3, 3), Stride=2
Flatten Layer /

Fully Connected (9216,4096)
Dropout P=0.5

Fully Connected (4096,4096)
Dropout P=0.5

Fully Connected (4096,2)

4. Results

The dataset used in this study was collected from chest X-ray images, consisting primarily of
radiographs from both healthy individuals and patients diagnosed with pneumonia. All images were
grayscale. In total, 5,840 chest X-ray images were included. The dataset was divided into two
folders, namely train and test, containing 5,216 and 624 images, respectively. Each folder was
further divided into two subfolders labeled NORMAL and PNEUMONIA. Specifically, the train
folder contained 3,875 images under PNEUMONIA and 1,341 images under NORMAL, while the
test folder contained 390 PNEUMONIA images and 234 NORMAL images. Figure 1 illustrates
several representative samples from the dataset, where NORMAL indicates a healthy condition and
PNEUMONIA indicates the presence of pneumonia.

y = Wx + b
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Figure 1. Sample images from the dataset

Prior to training, all images were preprocessed as follows: image sizes were resized to 224 × 224
pixels and normalized with mean = 0.5 and standard deviation = 0.5.

For model training, the Adam optimizer was adopted, and cross-entropy loss was chosen as the
loss function. The batch size was set to 32 for both the training and validation sets. The learning rate
was fixed at 0.0001. To evaluate the impact of training duration, the model was trained under
different epoch settings, and performance was compared accordingly. The classification accuracy
under different epochs is summarized in Table 2.

Table 2. Model accuracy under different epoch values

epoch Accuracy on Test Set

1 0.7548
2 0.7916
3 0.7147
4 0.8108
5 0.7612
7 0.7371
10 0.7644

As shown in Table 2, the model achieved the highest accuracy at epoch = 4, reaching 0.8108.

5. Discussion

With the advancement of deep learning, Convolutional Neural Networks (CNNs) have demonstrated
remarkable superiority. From LeNet-5, which leveraged local receptive fields and weight sharing for
efficient handwritten digit recognition, to AlexNet, which with its deeper architecture outperformed
traditional methods in the ImageNet competition, proving its strong feature extraction capability, and
further to the continuous innovations of VGG and ResNet, CNNs have consistently pushed the
frontier of image analysis. Compared with traditional image processing methods that rely on
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handcrafted features, CNNs benefit from large-scale data-driven training, enabling them to
dynamically adjust feature extraction strategies and adapt naturally to diverse tasks [13]. For this
reason, this study employed a CNN-based model.

Pneumonia is common among individuals with compromised immune systems, often presenting
with symptoms such as high fever and cough. Without timely intervention, the condition can
progress to severe pneumonia, leading to acute respiratory distress or even shock, thereby posing a
direct threat to patient survival [14]. If CNNs can achieve high-accuracy early prediction of
pneumonia, they can provide a critical window for earlier intervention and treatment. This justifies
the focus of this study on pneumonia-related image analysis.

In the experimental model, flatten and dropout layers were incorporated. The flatten layer
converts multi-dimensional feature maps into one-dimensional vectors, serving as a bridge that
allows the features extracted by convolutional and pooling layers to be fed into the fully connected
layers. The dropout layer, on the other hand, randomly discards units during training, effectively
mitigating the risk of overfitting.

Additionally, normalization preprocessing was applied to the dataset prior to training. On the one
hand, normalization compressed the dynamic range of pixel values, balancing the differences
between bright and dark regions of the image. This prevented overexposure or underexposure from
dominating the feature learning process and allowed the model to focus more on structural
characteristics of the image. On the other hand, normalization scaled raw data (e.g., pixel intensities
and feature values) into a specific range (such as 0–1 or –1–1), enabling the model to more precisely
capture subtle feature differences within this sensitive interval, thereby improving classification
accuracy.

Furthermore, training the model under different epoch settings revealed a fluctuating trend in
accuracy on the test set (see Table 2). Accuracy peaked at epoch 4 with a value of 0.8108, after
which it declined from its maximum and oscillated around lower values.

6. Conclusion

Against the backdrop of the rapid advancement of convolutional neural network (CNN)
technologies, this study focused on the intelligent recognition of pneumonia from chest X-ray
images. The research employed the AlexNet model for pneumonia classification, with the
architecture extended by incorporating a flatten layer and a dropout layer. Model performance was
evaluated under different epoch settings. The experimental results demonstrated that the proposed
CNN-based model exhibited strong performance, achieving relatively high accuracy in
distinguishing pneumonia cases from normal chest X-ray images.

Despite these promising results, several limitations remain. Specifically, the model’s
generalization ability across diverse medical imaging modalities and disease categories has not yet
been fully validated, leaving its broader applicability uncertain. Moreover, the study did not address
small-sample scenarios, which are common in clinical practice. To adapt the model for such
situations, techniques such as few-shot learning or advanced data augmentation strategies will be
necessary. In addition, the overall accuracy and robustness of the model require further improvement
to ensure reliable deployment in complex real-world clinical environments.

Future research should therefore focus on addressing these limitations to enhance the practical
utility of the model. First, efforts should be directed toward expanding the validation scope,
including testing the model across multiple imaging modalities (e.g., CT, MRI) and extending its
application to other disease classification tasks, thereby enhancing adaptability in diverse clinical
scenarios. Second, targeted optimization for small-sample cases can be achieved by integrating few-
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shot learning frameworks and advanced data augmentation techniques to sustain model performance
under data-limited conditions. Finally, further optimization of the model architecture, integration of
multi-source clinical data, and comprehensive robustness testing are expected to improve both
accuracy and stability, ultimately laying a stronger foundation for its clinical adoption as a reliable
diagnostic aid.
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