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Abstract. We prove that Tietze Extension does not always exist in constructive mathematics
if closed sets on which the function we are extending are defined as sequentially closed sets.
Firstly, we take a discrete metric space as our topological space. Now all sets open and
sequentially closed. Then, we form an unextendible algorithmic function transforming
positive integers to 0 and 1, looking at the preimages of these values as our sequentially
closed sets. Then we show that if the Tietze theorem conclusion holds for these closed sets
then the unextendible function is extendible thus giving us a contradiction. Hence, topology
in constructive mathematics have great differences compared to standard topology on
Euclidean space. In addition, different definition of special topological space may have
converse result on the same theory. Hence, topology in constructive mathematics have great
differences compared to standard topology on Euclidean space. In addition, different
definition of special topological space may have converse result on the same theory.
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1. Introduction

Constructive mathematics is different from its traditional counterpart, classical mathematics, by the
strict interpretation of the phrase “there exists” as “we can construct”. In order to work
constructively, we need to re-interpret not only the existential quantifier but all the logical
connectives and quantifiers as instructions on how to construct a proof of the statement involving
these logical expressions. There are mathematical schools that study constructive mathematics. The
difference between the two schools is that Russian school allows for the principle of constructive
choice also known as Markov Principle. It says that if one can refute that the set is empty then one
can find an element of the set. The Markov Principle is not allowed by the American school [1-3].

Constructive real numbers (CRN) were defined by Alan Turing (1936), who defined a real is
constructive if there exists a computable function     such that [4,5]:f : N → Q
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This operational definition provided by him rejects the classical continuum and establishes
computability as the bedrock of existence [1,4,5]. Constructive functions mean that a function on
constructive numbers      can maps CRNs to CRNs and it is algorithmic. Of course,
equivalent CNRs should be mapped to equivalent CRNs.

Markov Tseitin theorem says that all constructive functions are continuous, and Zaslavskii says
that the closed bounded interval is not compact in the sense of open covers definition but is compact
in terms of existence of finite    -net for each    , see Kushner [2]

In classical mathematics, the Tietze Extension Theorem is a fundamental result in topology,
asserting that any real-valued continuous function defined on a closed subset of a normal topological
space can be extended to a continuous function on the whole space [6,7]. Its proof relies non-
constructively on the Axiom of Choice and Law of Excluded Middle [6].

However, constructive mathematics adopts a stricter view on existence proofs: mathematical
objects must be explicitly constructed by an algorithm, and proofs must avoid non-constructive
principles. This paradigm shift, led by Brouwer's intuitionism [8], Bishop's constructive analysis [1],
and also developed by Markov [3] and Shanin [6], reveals that many classical theorems fail under
constructive scrutiny. In particular, the validity of extension theorems like Tietze's becomes highly
sensitive to the precise definitions of topological concepts. A critical point of divergence arises in the
definition of closed sets. While classical topology typically defines closed sets as complements of
open sets, constructive approaches often employ alternative characterizations, such as sequentially
closed sets, to better align with computability and explicit definability. These two definitions of
closed sets are equivalent in point set topology but not in constructive topology [1,2].

This paper investigates the status of the Tietze Extension Theorem in a constructive setting where
closed sets are defined as sequentially closed. We demonstrate that, contrary to the classical case, the
Tietze theorem does not always hold constructively under this definition. Our approach centers on a
specific counterexample: we construct a metric space     and a sequentially closed subset     
with a continuous function      that admits no continuous extension to    . The counter
example uses natural features of constructive logic, including the undecidability of disjunctions and
the inability to uniformly decide convergence properties, which obstruct the extension process.

This result emphasizes a deeper tension between classical and constructive topology: definitions
equivalent in classical topology may bifurcate in constructive settings, leading to divergent theorem
validity. It also highlights the necessity of carefully reevaluating foundational tools when
transitioning to constructive frameworks. Our work contributes to the broader program of
constructive analysis by clarifying the limitations of extension theorems and emphasizing the role of
definability in continuity principles.

2. Background

A normal topological space is a space in which any two disjoint closed sets have disjoint open
neighborhoods and more over every singular point set is closed.

First consider the particular case of the Tietze extension theorem (two closed sets version), with
values equal to zero and one on the two sets [6].

Let     be a normal topological space, and let     be disjoint closed subsets. Then:

∀k ∈ N  |x − f (x)| < 2−k

f : Rc → RC

ϵ ϵ

X A ⊆ X

 f : A → R  X

X A, B ⊆ X
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Any continuous function      such that      is      on      and      on     , can be
extended to a continuous function     such that     and    .

In particular, if     maps     to a constant     and     to a constant    , then there exists a
continuous function     such that:

This last statement is a well-known Urysohn Lemma needed to prove general Tietze extension
theorem in point set topology.

We define a topological space      where      with a discrete metric as our
topological space, and use the distance function:

In the space    , every subset is closed and also open.

3. Main results

In this part, we will state and prove Lemma 1: Every subset of      is sequentially closed, and
Theorem 1: There exists a constructive function that cannot be extended to the entire space, in order
to solve this problem.

3.1. Lemma 1

Every subset of     is sequentially closed.
Proof: Take any set    . If    , then there is no sequence in the set, thus it is sequentially

closed. If    , then let     be a convergent sequence in     that converges to    . Since the
metric is discrete, the sequence has to stabilize after a certain moment with all the points in it being
the same. Thus     contains the limit of the sequence.    

We then state a theorem 1:

3.2. Theorem 1

There exists a constructive function that cannot be extended to the whole space.
Proof: There exists a computable function     on positive integers that takes values only     and    

that does not have an everywhere defined computable extension, this result first proved by Turing
can be found in Vershagin Shen [4]. Let     be the unextendible function. Let     be the set of all
points where     is     and     be the set of all points where     is    . Both sets are sequentially closed
and the function      is continuous when viewed as a function on     . This function does not
admit a continuous computable extension to the whole space    .

f : A ∪ B → R f 0 A 1 B

F : X → R F |A = f|A F |B = f|B
f A a ∈ R B b ∈ R

F : X → R

F (x) = a for all x ∈ A

F (x) = b for all x ∈ B

X = (Ω, τ), Ω = N

d(x, y) = {
1 when x ≠ y

0 when x = y

X

X

X
E ⊆ X E = ∅

E ≠ ∅ {xn} E x

E Q. E. D.

f 0 1

f(x) A

f 0 B f 1
f A ∪ B

X
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Remark: Our topological space is normal indeed. Take any closed     , which  
  . Since any subset of      is open,      and      are open, and  

  . Therefore, for any      and     , we can find two disjoint
neiborhoods     and    , so the space is normal. It is of course all clear that every singular point set
is closed.

If the conclusion of the Tietze theorem holds then we can extend this      to continuous
constructive function with values in constructive real numbers. We argue by contradiction and let  

  be that program.
Let     be a program that does one step of the program computing the rational

approximation of the CRNs and get the output as    .

Define    , so it is a composition of two programs applying     to the result of    .
Note that the program     always termiantes on all inputs.     is an extension of     and has
values of     and     only.

Hence, we get an extension of an unextendible function which is a contradiction.    
Remark: the program     is not well defined as a constructive function on the space of all CRNs

because different programs giving equivalent CRNs can be mapped to different 0,1 values.
However, the composition     is still well defined so there is no gap in the proof. Since for different
programs of the CRN    , the corresponding     must be different, so for every    , there is only
one possible     , and one only possible program that computes CRNs (no matter if it has any
other equivalent CRNs or not) , hence giving one only possible result in the first step of the
program, and only one possible     as the result.

Remark: In Munkres there are two versions of the Titze extension theorem where the values of
the function are in bounded interval and in the whole real line respectively. Above we prove that the
version with values in the whole real line does not hold in constructive mathematics when we
interpret closed sets as being sequentially closed. The other version of the Tietze theorem also does
not hold in the constructive mathematics world for similar reasons.

Urysohn lemma states that if a topological space is normal then any two disjoint closed subsets
can be separated by a continuous function. In fact, Urysohn lemma is a very important step in
proving Tietze Extension theorem.

Specifically, let     be a normal topological space and let     be disjoint closed subsets of
   . Then there exists a continuous function:

So that:
    for all    
   for all    
Our solution also prove that Urysohn lemma conclusion does not always exist in constructive

mathematics if closed sets are defined as sequentially closed sets.

C, D ⊂ X 

C ∩ D = ∅ X C' = C D' = D
C ⊆ C',  D ⊆ D',  C' ∩ D' = ∅ C D

C' D'

f(x)

F : X → CRN
g : All CRN → [0,1]

a

g(x) = {
0 when a < 0.5

1 when a ≥ 0.5

h (x) = g(F (x)) g F

h h(x) f(x)

0 1
Q. E. D.

g

h
F(x) x x

F(x)

h (x) = g(F (x))

X A, B ⊆ X
X

f : X⟶ [0,1]

f (a) = 0  a ∈ A

f(b) = 1  b ∈ B
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4. Conclusion

Through the prove let all sets open and sequentially closed make unextendible function is extendible
thus giving us a contradiction. So, that Tietze Extension does not always exist in constructive
mathematics when closed sets are defined as sequentially closed sets.

However, since closed sets have other definition in constructive mathematics, we pose out an
open question rely on another definition of closed sets in topology. Does the Tietze theorem hold if
we define closed sets as the complements of constructive open sets? To our point of view, for this
interpretation of closed sets, our answer may be different compared to closed sets defined as
consequentially closed sets.

Remark: Constructive open sets means that for every point there is a program giving you an open
ball in the set containing the point. In addition, Lacombe open sets means that it is the union of a
computable sequence of rational open balls where the enumeration is effectively given and where
membership of a point in the set is semi-decidable [2]. Lacombe open sets are particular cases of
constructive open sets. for example, in discrete metric space since each single points are open sets,
we can choose an unenumerable union of points, which is constructive open sets but not Lacombe
open sets. (an instance of an unenumerable set is a complement of enumerable undecidable set, see
Post theorem of Vinogradov Schen [9])
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