
Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

50

From Baseline to High Throughput: Architecture and
Resource Co-Optimization of a Verilog-Based Newton–

Raphson Divider on FPGAs

Wentao Ding

School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
s2345604@ed.ac.uk

Abstract. This paper is targeted at FPGA and proposes an engineering optimization scheme
for a Newton-Raphson (NR) iterative divider based on Verilog. Starting from the baseline
implementation, it uses MSB normalization and small LUT to provide initial values,
combined with phased pipelining driven by fixed iteration and counter; it also combines the
optimization and reuse of multipliers, and introduces the fast path of power of two and
dual/four-channel interleaving to stabilize throughput. The design achieves a more balanced
performance in terms of timing convergence, resource controllability, and stable throughput.
Through synthesis and simulation, it evaluates LUT/FF/DSP, Fmax, end-to-end delay, and
error quantile indicators to verify the deployability of this scheme in actual signal chains.

Keywords: verilog, FPGA, Newton–Raphson, VLSI, optimization

1. Introduction

1.1. Context and problem background

In many signal chains (such as numerical calibration, filter gain update, coordinate transformation,
etc.), division operations are repeatedly used. Directly implementing division operations on an
FPGA usually results in large-scale combinational circuits or multi-cycle state machines generated
by synthesizers, which have problems such as long critical paths, high wiring pressure, high DSP
and LUT usage rates, and difficulty in achieving both high frequency and low latency
simultaneously [1]. If support for signed and decimal numbers is added, the control and verification
costs will increase rapidly, and the correctness of boundary values and convergence conditions will
be more difficult to guarantee. Due to these engineering limitations, we adopted the "first calculate
the reciprocal and then multiply" method, which effectively completes division operations by
multiplying the dividend by the reciprocal. The reciprocal is generated through Newton-Raphson
(NR) iteration and only relies on multiplication and addition, which is naturally suitable for DSP48
multiply-add chains [2], facilitating strong pipelining and register segmentation, and is also
convenient for time grouping reuse in resource-constrained scenarios and channel interleaving in
high throughput scenarios. Combined with the fixed-point operation mode, the divisor can be
standardized to a controllable range first, then an initial value is provided by a small lookup table,



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

51

and several iterations are carried out; its quadratic convergence characteristic enables the accuracy
to increase rapidly with the increase in the number of steps. Common formats such as Q16.16
usually reach the target after only two iterations. For powers of two divisors, a fast path can be used,
directly obtaining the result through shifting, thereby combining the general path with special cases
optimization to achieve a more stable engineering balance between resources, timing, and
throughput.

1.2. Objectives and evaluation metrics

Our goal is to demonstrate an optimized NR frequency divider under fixed conditions, aiming to
minimize the usage of digital signal processors (DSPs), while meeting the accuracy requirements of
the application, increasing the operating frequency, and limiting the total latency within a
predictable number of pipeline stages. With Q16.16 as the core, we combine normalization and
small LUT initial values, 2-power pathways, powerful pipelines, and segmented pipelines with
multiplication-addition chains. We also provide two configurations, "reuse" and "interleaving", to
balance throughput and resource consumption. The evaluation is based on three categories of
indicators: in terms of resources, we focus on the number of LUTs, the number of registers, and the
number of DSPs; in terms of timing, we focus on critical path margin, end-to-end delay, and per-
cycle throughput; in terms of accuracy, we mainly use the maximum and median relative errors of
random and boundary samples. At the same time, we record the impact of the size of the initial value
table and the number of iteration steps on the error and resources to ensure stable and reliable
performance in the actual signal chain.

2. Basic circuit implementation and issues: fundamental circuit modifications

2.1. Baseline circuit implementation and issues

2.1.1. Fundamentals of circuit implementation explained

First, a fundamental explanation of this paper's core subject is required: Newton–Raphson
approximate division. The Newton–Raphson iteration method can be employed to compute
reciprocals for division. Its fundamental principle involves iteratively approximating the true
reciprocal. For division, let the desired reciprocal be 1/d . Taking equation (1) yields the iterative
equation (2):

(1)

(2)

The formula (2) indicates that the next iteration value      is obtained by multiplying the
current approximation     by the correction factor     . This method exhibits quadratic
convergence, and a suitable initial value enables rapid convergence towards 1/d [3].

The NewtonDivider module in the provided code performs division according to the
aforementioned iterative principle. The circuit employs a 32-bit fixed-point Q16.16 format (16-bit
fractional part), where 1.0 is represented as 65536. First, the initial approximation     is computed
via the following code:
\begin{lstlisting}[language=Verilog]

f(x) = 1
x

  −  d

xn+1 = xn * (2  −  d * xn)

xn+1

xn (2  −  d * xn)

x0



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

52

wire [31:0] init_x = (divisor != 0) ? (32'd65536 / divisor) : 32'd0;

\end{lstlisting}

Here, 65536 represents the fixed-point number 1.0[4]. When divisor is non-zero, the
initialreciprocal estimate is obtained as 65536/divisor. Subsequently, the circuit enters
iterativecomputation, performing the following operations in each round:
\begin{lstlisting}[language=Verilog]

wire [31:0] two_fixed = 32'h0002_0000; // 2.0 in Q16.16

assign factor = $signed(two_fixed) - $signed(dx_fixed);

assign mul_tmp = $signed(x_current) * factor;

wire [31:0] x_next = mul_tmp[47:16];

\end{lstlisting}

The above code implements the update equation (2) : first, factor is computed to yield 
 , then the current value x_current is multiplied by factor to produce the new x_next.

By truncating the product at positions [47:16] to align the fixed-point multiplication result
(preserving 16 decimal places). The updated x_current will be closer to 1/d.

To determine convergence, a threshold is set to compare the difference between consecutive
iterations. When      is less than 0.001, iteration may cease. The corresponding check in
the code is as follows:
\begin{lstlisting}[language=Verilog]

localparam THRESH = 32'd66; // 0.001 * 2^16

assign converged = (abs_diff < THRESH);

\end{lstlisting}

When converged is true, it indicates that the iteration satisfies the accuracy requirement. At this
point, the FSM exits the loop and proceeds to calculate the final result. The module multiplies the
dividend by the last x_current value to obtain the fixed-point representation of the quotient, mul_q,
and extracts its upper 32 bits as the output:
\begin{lstlisting}[language=Verilog]

quotient <= mul_q[47:16];

\end{lstlisting}

The entire process is controlled by a finite state machine, encompassing states such as IDLE
(awaiting initiation), INIT (loading initial values), CALC_FACTOR/UPDATE_X (iterative
computation), CHECK_CONV (verifying convergence), CALC_QUOT (calculating the quotient),
and DONE (outputting results), which coordinate the aforementioned operations. Upon triggering
the start signal, the FSM cycles through iterative computations until convergence is achieved. It then
calculates the final quotient and signals completion via the ready signal.

The Figure 1 is a block diagram of my circuit code logic, which may serve as a reference.

(2  −  d * xn)

|xn+1  − xn|



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

53

Figure 1. Block diagram of the circuit code logic

2.1.2. Issues, disadvantages and potential risks in the initial code

The initial baseline implementation had multiple issues. The FSM control process design is
unreasonable. My initial version did not adopt a concise iteration counting mechanism, and the state
machine design was complex (executing multiple operations in a single state). The control logic
makes it difficult to understand and not conducive to subsequent expansion. The initial value
selection of the iterative algorithm is incorrect. The baseline implementation obtains an initial
reciprocal approximation through hard coded division (such as directly calculating x0=1.0/divisor),
which not only consumes additional resources but also deviates from the original intention of the
Newton Raphson algorithm to avoid direct division. If fixed initial values are used, there will be a
lack of adaptability to different inputs, which can lead to slow convergence or even divergence in
some cases. At the same time, this design only supports integer input/output interfaces, and the input
is treated as a pure integer (with a decimal part of 0), which cannot directly generate non integer
quotient and limits its application scope. Finally, the definition of termination conditions for
iteration is insufficient. The dynamic error evaluation mechanism used in the benchmark version is
not robust enough, resulting in unreliable convergence criteria. This may lead to premature
termination or insufficient accuracy, and it cannot be guaranteed that accuracy requirements will be
met under all conditions. For example, if there is a significant deviation between the previous
iteration value and the correct value, even if the difference between the subsequent iteration value
and the previous iteration value is minimal, the result will still be distorted. Thus, these defects
result in significant disadvantages for the benchmark circuit in terms of control capability, accuracy
performance, and flexibility.

2.2. Circuit modification (feasible implementation improvements)

Initially, I broke down the Newton iteration method into several steps and adopted the FSM
(Initialization, Calculate Factor, Update x, Check Convergence, Output) logic. This logic was clear
and straightforward, but there were too many states, resulting in a bloated control part [5]. Later, I
transformed it into a "rhythm counter" process: add an iteration counter, start it, and increment it in a
fixed sequence in each clock cycle; when the convergence condition is met or the iteration limit is
reached, exit. In this way, there is no need to maintain a bunch of intermediate states (such as



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

54

CALC_FACTOR/UPDATE_X/CHECK_CONV), and the design, verification, and scalability of the
control unit can be improved significantly [6].

Decimal support is achieved through fixed-point arithmetic. First, scale the input value to the
target precision (for example, if two decimal places are required, multiply by 100 and round to the
nearest integer), and then send it as a 16-bit unsigned value; internally, it is uniformly represented as
Q16.16 (16-bit integer + 16-bit fraction), and the result is output in this format. For example, (7.00 ÷
2.30) becomes (700 ÷ 230), and the result can be accurately represented in a fixed form. Without
using floating-point numbers, it can cover more scenarios in a fixed decimal form and is more
practical.
\begin{lstlisting}[language=Verilog]

module NewtonDivider(

...

input wire [15:0] dividend, // Dividend (supports two decimal places; e.g., 7.00 
should be entered as 700)

input wire [15:0] divisor, // Divisor (supports two decimal places; e.g., 2.30 
should be entered as 230)

...

);

\end{lstlisting}

The annotation in the aforementioned port definition indicates support for fractional values: both
input and output are processed in the agreed fixed-point format with two decimal places. Through
this scaled representation, the circuit maintains fractional precision while enabling internal
operations to utilise integer logic, thereby avoiding the complexity of floating-point calculations [7].

Then, in order to accelerate the convergence of Newton's iteration, I redesigned and improved the
method for obtaining the initial reciprocal value   [8]. I used the rough lookup table (LUT) method
to approximately replace the precise calculation. The old version directly provided a fixed initial
value obtained through division, or I also tried using a simple constant. Now, based on the size of
the divisor, a closer initial estimate is dynamically selected. I roughly estimated the reciprocal by
detecting the binary amplitude (the position of the most significant bit) of the divisor. For example,
in the circuit, the logic for calculating the highest significant bit (msb_index) of the divisor was
added, and based on it, the initial     was selected:
\begin{lstlisting}[language=Verilog]

// Calculate the most significant bit of the divisor msb_index

always @(*) begin

if (divisor >= 16'h8000) msb_index = 15;

else if (divisor >= 16'h4000) msb_index = 14;

... // (Further similar determinations omitted)

else if (divisor >= 16'h0002) msb_index = 1;

else msb_index = 0;

end

// Determine whether the divisor is a power of 2, and compute the initial 
reciprocal estimate value init_x

x0

x0



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

55

wire power_of_two = (divisor != 0) && ((divisor & (divisor - 1)) == 0);

wire [31:0] init_x = (divisor != 0) ?

(32'd1 << (power_of_two ? (16 - msb_index) : (15 - msb_index))): 32'd0;

\end{lstlisting}

The above code is equivalent to a small LUT (Look-Up Table). It selects different initial values of
     based on the range of the divisor. When the divisor is exactly a power of 2, its reciprocal is
precisely the corresponding negative power of 2, and the circuit directly shifts left by 1 to obtain the
exact reciprocal (for example, if the divisor is    , then the initial     is achieved in Q16.16
format through 1 << (16-k)); if the divisor is not a power of 2, an estimated value slightly less than
the true reciprocal is taken (using 1 << (15 - msb_index), which is one bit less than the exact value),
ensuring that the initial estimate is not too large. The reason for this processing is that in the Newton
method, a smaller initial value usually ensures stable convergence of the iteration. Using a rough
LUT initial value can avoid directly performing division operations, and the hardware cost is very
low (only some comparisons and shift logic are needed), but it can significantly accelerate the
convergence of the iteration: a good initial value can reach the required accuracy in fewer iteration
steps.

Next, I will explain the rounding strategy I used. In the design, the Q16.16 fixed-point format
was adopted to uniformly represent the real numbers during the iterative process. It includes both
the integer part and the fractional part. The integer bit width of the Q16.16 representation is 16 bits,
and the fractional bit width is also 16 bits. Therefore, the values are represented in 32-bit fixed-point
format in the hardware. For example, the constant 2 is represented as 0x0002_0000 in the Q16.16
format. Fixed-point multiplication produces a result with double the bit width, so after each
multiplication, it needs to be aligned to the fixed-point bit width, usually by discarding the low 16
bits to achieve the equivalent of dividing by     scaling. This point is reflected in the code multiple
times, such as taking the high-order part after calculating the product as the result:
\begin{lstlisting}[language=Verilog]

wire [31:0] two_fixed = 32'h0002_0000; // The constant 2 represented as Q16.16

// Calculate d * x_n and align to Q16.16 format

assign mul_dx = $signed({1'b0, divisor, 16'b0}) * $signed(x_current);

wire [31:0] dx_fixed = mul_dx[47:16]; // Shift the product right by 16 bits, 
aligning to Q16.16

// Calculate Newton's iteration factor: factor = 2 - d * x_n

assign factor = $signed(two_fixed) - $signed(dx_fixed);

// Update iteration value: x_{n+1} = x_n * factor (result aligned to Q16.16)

assign mul_tmp = $signed(x_current) * $signed(factor);

wire [31:0] x_next = mul_tmp[47:16]; // Shift the product right by 16 bits to 
obtain the result Q16.16

...

localparam THRESH = 32'd66; // Convergence threshold ≈ 0.001 (as per Q16.16)

...

// Final quotient calculation: quotient = dividend * x_current (result right-
shifted 16 bits for alignment)

x0

2k x0  =  2−k

216



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

56

assign mul_q = $signed({1'b0, dividend, 16'b0}) * $signed(x_current);

...

quotient <= mul_q[47:16];

\end{lstlisting}

As mentioned above, after each multiplication operation, the lowest 16 decimal digits of the
result are truncated to [47:16] bits, ensuring that the result remains in the Q16.16 format. Although
truncation introduces a certain degree of error deviation, the convergence process of the Newton
iteration can tolerate and gradually reduce this error. This design also sets a convergence threshold
THRESH = 66 (approximately 0.001 in Q16.16 format) to determine when the iteration should stop.
When the difference between two consecutive iterations is lower than this threshold, the result is
considered to be accurate enough (thereafter, I abandoned this method and instead adopted a fixed
number of iterations and conducted convergence evaluation during simulation). In the calculation of
the final quotient, the lowest 16 digits are truncated according to the fixed-point format, keeping the
quotient in Q16.16 precision. Therefore, the unified fixed-point format combined with a simple and
effective rounding and truncation strategy ensures the stability and accuracy of the circuit
calculation, while controlling the complexity of the hardware implementation.

3. Throughput and resource optimization

3.1. Reuse of the multiplier module

During the iterative process of the Newton-Raphson divider, multiple 32×32-bit multiplication
operations need to be executed. If a separate multiplication module is instantiated for each operation,
it will consume a large amount of DSP resources in the FPGA. Therefore, we adopt a strategy of
reusing the multiplication module: only one 32×32-bit multiplication unit is instantiated in the
hardware design, and the same unit is called cyclically at different operation stages to complete all
multiplication calculations. In other words, one multiplication module is time-division multiplexed
to calculate intermediate products such as mul_dx, mul_tmp, and mul_q_next in sequence. The
following code snippet shows the instantiation method of the multiplication module:
\begin{lstlisting}[language=Verilog]

Multiplier32x32 mult_dx_inst (

.a({abs_div, 16'b0}),

.b(x_current),

.y(mul_dx)

);

\end{lstlisting}

Through such a module reuse design, multiple multipliers that originally needed to be deployed
in parallel share the same set of hardware, achieving repeated utilization of the DSP multiplier unit
and significantly reducing resource consumption. A 32×32 multiplication operation is typically
mapped onto several FPGA DSP Slices; if three parallel multipliers are directly used, DSP
consumption will increase exponentially, while reusing a single multiplier hardware significantly
reduces DSP usage. In this design, the cost of reusing the multiplier module is that each
multiplication operation needs to be executed in a staggered sequence in time and cannot be
completed simultaneously in parallel. This will slightly increase the execution delay of the



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

57

algorithm. However, by introducing pipelining and interleaved parallelism in the subsequent design
(see Section C), the potential impact of reduced throughput is minimized. Overall, the reuse of the
multiplier module is highly effective in saving hardware resources, at the cost of only a slightly
increased complexity in timing scheduling, in exchange for a significant reduction in DSP resource
usage [9].

3.2. Multiplexer modification

The design of the multiplier module has been further improved and explored, mainly covering two
aspects: (a) attempts to implement fast multiplication based on the Karatsuba algorithm, and (b) the
development of a custom multiplier based on shift-add method along with "rounding" approximation
processing.

3.2.1. Discussion and trade-offs of Karatsuba algorithm principles

Karatsuba is a well-known fast multiplication algorithm. Its basic idea is to split the large-width
multiplication into smaller segments for calculation. Specifically, it divides the two numbers to be
multiplied into high-order and low-order parts, and then uses three smaller-scale multiplication
operations and several addition and subtraction operations to calculate the original product.
Compared with the 4 sub-multiplications required by the ordinary splitting method, Karatsuba
ingeniously utilizes the following identity transformation to reduce one multiplication:

Let the high-order product be equation (3) and the low-order product be equation (4); then the
cross-product from equation (5) can be rewritten as equation (6), thereby converting the original two
multiplications into a single multiplication plus or minus operation [10].

(3)

(4)

(5)

(6)

Karatsuba used divide-and-conquer to split a 32×32 multiplication into three 16×16
multiplications, and then combined them through shifting and addition. Theoretically, this method
can reduce the complexity of large number multiplication. However, in the 32-bit fixed-point
implementation on FPGA, we did not adopt it. There are two reasons for this. Firstly, the hardware
needs to manage the alignment, summation, and subtraction of multiple partial products, as well as
retain wider intermediate bits, which leads to an increase in overhead and complexity. If the lower
bits are truncated, the precision will be insufficient and it will be difficult to meet the requirements
of iterative division. Secondly, at the 32-bit scale, the DSP core is already very efficient. Karatsuba
often does not reduce the DSP (it still requires three 16×16 multiplications), but instead increases the
adder. Considering the implementation difficulty, resource gain, and precision risk, its theoretical
advantages cannot be transformed into actual improvements. In fact, it may even have the opposite
effect.

z2 = xH* yH

z0 = xL* yL

z1 = xH* yL + xL* yH

z1 = (xH +  xL)*(yL +  yH)  −  z2  −  z0



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

58

3.2.2. Shifted adder and rounding approximation

For the standard multiplier structure, we also explored a custom 32-bit multiplier based on the shift-
add principle, and implemented an approximation strategy for rounding the lower bits of the result
on this basis. The "shift adder" refers to using the basic principle of binary multiplication: by
performing bitwise AND operations between the digits of the multiplicand and the multiplicand to
generate partial products, and then performing appropriate shift and addition to obtain the product
result [11]. This method is equivalent to manually assembling a multiplier in hardware. The
following is a core code snippet of this multiplier module:
\begin{lstlisting}[language=Verilog]

// add and shift

for (i = 0; i < 32; i = i + 1) begin

for (j = 0; j < 32; j = j + 1) begin

if (a[i] & b[j] & ((i + j) >= K)) begin

acc = acc + (64'd1 << (i + j));

end

end

end

// Add a bias to implement rounding functionality

acc = acc + BIAS;

y = acc & ~((64'd1 << K) - 1);

\end{lstlisting}

The above code implements a 32×32 fixed-point multiplication. Here, the parameter K is used to
specify the number of low-order bits to be truncated, and the accumulator acc is used to accumulate
all valid partial products. The double loop traverses each bit of the multiplier a and the multiplicand
b. When the corresponding bit is 1 and the weight of its product bit is not less than the truncation
threshold K,      is added to the accumulator. This effectively amounts to only accumulating the
valid parts of the product that are above the lowest K bits, thereby ignoring the contribution of the
lowest K bits. Next, the code adds a bias constant equation (7), and then clears the lowest K bits of
the accumulator. This bias-clearing operation implements an "approximation by rounding" for the
ignored parts: the bias is equivalent to adding 0.5 units before truncation, and after truncation, it is
equivalent to rounding the lowest K bits to the nearest integer.

(7)

This shift-add-multiply unit essentially constructs multiplication within the logic unit, thereby
enabling flexible control over the product's precision. By choosing the truncation bit number K, we
can balance the computational accuracy and hardware overhead: omitting some lower-order
calculations will reduce the occupation of some hardware resources, and rounding off reduces the
error introduction. Compared to the built-in DSP multiplication unit in FPGA, this solution is a
"lightweight" implementation, suitable as a reference design for evaluating the impact of precision
loss. In our project, we wrote the above shift-add-multiply unit for testing the influence of low K-
value truncation on the final quotient's precision. The results show that a slight truncation and

2i+j

BIAS  =  1  <<  (K − 1)



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

59

rounding processing result in a very limited decrease in the quotient's precision, but if too many bits
are truncated, the error significantly increases. Therefore, this method can be used as an alternative
with adjustable precision or for approximate division implementation in resource-constrained
situations. However, it should be noted that the delay of shift-add-multiplication is relatively long
(the expansion of the double loop may become a long serial chain on the hardware), so its speed is
not as fast as the DSP core multiplication unit for high-performance requirements. Moreover, as the
truncation bit number increases, the precision loss may affect the convergence and correctness of the
Newton-Raphson iteration. Therefore, in the final implementation, we use this scheme as an
evaluation means to balance the trade-offs, and it has not completely replaced the standard
multiplier.

3.3. Interleaving dual/quad channel design and application of pipeline technology

To address the potential reduction in throughput rate caused by the reuse of the aforementioned
multiplier module, we introduced a design that combines time interleaving (Interleaving) [12],
multi-channel parallelism, and deep pipeline in the circuit. Specifically, this design adopts a four-
channel time interleaving architecture, dividing the iterative calculation process into 4 pipeline
stages, and using registers in the hardware to sequentially transfer the results of each stage, thereby
significantly reducing the combinational logic delay of a single stage. In the code, the four-stage
pipeline processing is implemented through the pipeline_phase state and a series of registers, and the
key segments are as follows:
\begin{lstlisting}[language=Verilog]

case (pipeline_phase)

2'd0: begin

// Stage 0: Store the first multiplication result

mul_dx_reg <= mul_dx;

dx_fixed_reg <= mul_dx[47:16];

end

2'd1: begin

// Stage 1: Calculate the factor

factor_reg <= two_fixed + (~dx_fixed_reg + 1);

end

2'd2: begin

// Stage 2: Store the second multiplication result

mul_tmp_reg <= mul_tmp;

end

2'd3: begin

// Stage 3: Extract x_next, store the third multiplication and update the state

x_next_reg <= mul_tmp_reg[47:16];

mul_q_next_reg <= mul_q_next;

x_current <= x_next_reg;



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

60

iter_cnt <= iter_cnt + 1;

...

end

endcase

pipeline_phase <= pipeline_phase + 2'd1;

\end{lstlisting}

The above code clearly demonstrates the application of the four-stage pipeline in iterative
operations: The entire Newton iterative process is divided into four stages - 0, 1, 2, and 3. Each stage
performs a part of the calculation, and the intermediate results are temporarily stored in registers
(such as mul_dx_reg, factor_reg, mul_tmp_reg, x_next_reg, etc.). The direct benefit of this approach
is to shorten the critical path: All the calculations that originally needed to be completed within one
clock cycle are distributed over four cycles, with each cycle performing only a small part of the
calculation. This ensures a significant reduction in the combinational logic level. As a result, the
clock frequency limit is increased, and the circuit can run faster. In fact, after the implementation of
the four-stage pipeline, our multiplier module can operate stably at a higher main frequency,
increasing the number of iterative steps per second.

However, merely having a pipeline alone cannot increase the throughput rate; if each division
operation still requires 4 cycles to complete all stages, the output rate of a single result is only 1/4 of
the original. Therefore, we utilize the idea of multi-channel interleaved parallelism to fully leverage
the parallel processing capability of the pipeline. The term "dual/four-channel interleaving" refers to
simultaneously processing different stages of multiple division operations, forming a "flow
operation". In the case of a dual-channel setup, the first input can execute stages 0-3 in odd-
numbered cycles, and the second input can execute them out of phase in even-numbered cycles. This
way, the two inputs alternate occupying the pipeline, each still requiring 4 cycles to complete but
with results being produced every 2 cycles overall. Further expanding to a four-channel interleaving,
that is, using each segment of the four-stage pipeline to simultaneously handle the different stages of
4 different division tasks: when the first division is at stage 0, the second division is at stage 1, the
third at stage 2, and the fourth at stage 3. Thus, with each clock cycle, the pipeline completes one
stage of calculation and advances, and when the pipeline is filled, an ideal throughput rate of
outputting one result per clock cycle can be achieved. In summary, the four-channel time
interleaving enables although each individual operation still requires 4 cycles to complete, it can
concurrently produce partial results of 4 different operations within 4 cycles, starting to output new
results every 2 cycles from the 5th cycle. This ensures that while resources are reused, the overall
throughput of the system does not decrease [13].

In the actual code we designed, since a single division operation needs to complete all iterations
before outputting the final quotient value, we mainly utilized the pipeline to improve the
performance of a single operation. However, this approach is also applicable to scenarios where
multiple division requests are processed in parallel: by simply duplicating an appropriate number of
registers and control logic, dual-channel or even quad-channel interleaved execution can be
achieved on the hardware. It is worth noting that multi-channel interleaving increases the complexity
and resource overhead of the circuit (for example, separate register groups need to be maintained for
different channels), but compared to directly adding independent computing units, the increase in
resources is small, yet it achieves a nearly linear improvement in throughput [14].

Overall, the adoption of a four-stage pipeline combined with an interleaved multi-channel design
brings the following advantages: the critical path becomes shorter, the circuit can operate at a higher



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

61

frequency, the throughput rate increases/remains unchanged, and more division operations can be
completed within a unit of time. However, the main cost is that the output delay increases to a
certain extent (for example, a four-stage pipeline requires several cycles to "fill" the pipeline) and
the control logic becomes slightly more complex. But overall, this is a very efficient performance
optimization method. Through this approach, we successfully designed the divider while ensuring
resource control, maintaining a high throughput rate and significantly increasing the clock speed,
achieving the goal of optimizing performance.

4. Initial value estimation

4.1. LUT design: high-indexing, table structure and implementation

To accelerate the convergence of the Newton iteration for finding the reciprocal, we used a lookup
table (LUT) in the hardware to provide an initial value estimate [15]. Specifically, the magnitude of
the divisor is determined based on its most significant bit (msb), which makes the initial estimate
interpretable: we know roughly which power of 2 the divisor is located within. In the code, the
msb_index is calculated by prioritizing the judgment of the absolute value of abs_div, which is
equivalent to finding the index of the highest bit that is 1. As shown in the following code snippet,
we successively compare abs_div with the threshold of the descending power to determine its range
interval (for example, if abs_div is greater than or equal to 0x8000, the highest bit index is 15, and
so on) [16]:
\begin{lstlisting}[language=Verilog]

if (abs_div >= 16'h8000) msb_index = 15;

else if (abs_div >= 16'h4000) msb_index = 14;

......

else if (abs_div >= 16'h0004) msb_index = 2;

else if (abs_div >= 16'h0002) msb_index = 1;

else msb_index = 0;

\end{lstlisting}

After obtaining the msb_index of the divisor through the above logic, we normalize the divisor
(by shifting it to the left, aligning its highest bit to a fixed position), and take several bits from the
normalized high part as the index for the lookup table. This allows us to select the appropriate
reciprocal initial value based on the range where the divisor lies, and the structure is quite intuitive:
The LUT divides the possible range of divisor values into multiple sub-intervals based on the high
bits. In our design, a 4-bit LUT index is used, dividing the normalized divisor into 16 sub-intervals,
and each interval is pre-stored in the LUT with an approximate reciprocal value of the typical point
of that interval. The following code example shows the index calculation and table structure of the
LUT: First, take the high 4 bits of the normalized divisor norm_div as lut_idx, and then use the case
statement to select the corresponding lut_recip value. There are 16 items in the table, covering the
possible range of divisor values, and each item is a fixed-point number form of the initial
approximate reciprocal value:
\begin{lstlisting}[language=Verilog]

wire [3:0] lut_idx = norm_div[15:12];

case (lut_idx)



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

62

4'h0: lut_recip = 32'h000F_083E;

4'h1: lut_recip = 32'h000E_A0F;

......

4'hF: lut_recip = 32'h0008_0208;

endcase

\end{lstlisting}

It can be seen that this lookup table covers 16 sub-intervals within the range of normalized
divisors from 0.1000...b to 0.1111...b (in binary). For each interval, an approximate reciprocal value
is selected. For example, when lut_idx = 0 (when the normalized divisor is close to 1.0 in the highest
interval), the lookup table gives an initial reciprocal value of 0x000F_83E; while when lut_idx = F
(when the normalized divisor is the smallest, that is, close to 0.5), it gives a relatively large initial
reciprocal value of 0x0008_208. Through this LUT based on the high-order index, we have
implemented piecewise approximation of reciprocals in hardware: it intuitively segments according
to the size of the divisor, and each segment has a clear initial reciprocal estimate, making the process
of selecting the initial value interpretable (able to explain the divisor range corresponding to each
LUT constant). This initial estimate init_x either takes the above LUT value shifted by msb_index
bits (scaled according to the divisor size), or takes a fast path in special cases where the divisor is a
power of 2 or 0. Overall, partly relying on the more accurate initial values provided by the lookup
table, the subsequent Newton iteration converges faster, laying the foundation for improving
throughput.

4.2. Trade-off between initial estimation accuracy and iteration count

The convergence speed of the Newton-Raphson method depends on the accuracy of the initial
estimate. The closer the initial value is to the true reciprocal, the fewer the number of required
iterations. This principle is reflected in our design by adjusting the precision of the LUT: the more
bits the LUT uses (the finer the segments), the more accurate the initial reciprocal provided, and thus
the number of iterations can be reduced. If the size of the LUT is reduced, the initial value is less
precise and more iterations are needed to achieve the same level of accuracy. This is a typical trade-
off between throughput and resources [17].

For example, for a 16-item LUT with 4-bit indices, only 5 iterations are needed to meet the
accuracy requirements. However, if the LUT precision is reduced, for instance, by using a 2-bit
index (corresponding to 4 initial value ranges), the initial estimation error increases, and in our
implementation, we need to increase the upper limit of the iteration count to ensure accuracy
convergence. In the code of the 4 initial value schemes, MAX_ITER is set to 8, which means a
maximum of 8 iterations are allowed. This precisely reflects the trade-off between the accuracy of
the initial value and the iteration cost. Now, let's further look at the differences in the selection of
initial values between these two schemes.

In the scenario with only 4 initial estimates, we divide the divisor range into four segments and
select a fixed proportion coefficient for each segment as the initial reciprocal approximation. For
example, the interval is divided into [2^k, 1.25·2^k), [1.25·2^k, 1.5·2^k), [1.5·2^k, 1.75·2^k),
[1.75·2^k, 2^k), corresponding to the estimated values c0, c1, c2, c3. In the code implementation,
first calculate the base value base (the ideal reciprocal value when the divisor is exactly 2^k), and
then predefine several coefficients to approximate the reciprocals of different intervals, such as 0.8,
0.67, 0.5714, etc. Proportions. Based on which interval the divisor falls, select the corresponding c



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

63

value as the initial reciprocal init_x. The following code snippet shows the implementation of the 4
segments of the initial estimation scheme:
\begin{lstlisting}[language=Verilog]

// Initial estimate: 4-bit precision division

wire [31:0] base = 32'h0001_0000 >> msb_index;

// Quadrant intervals (2^k, 1.25·2^k, 1.5·2^k, 1.75·2^k)

wire [15:0] t1 = (16'd1 << msb_index) + (16'd1 << (msb_index - 2));

wire [15:0] t2 = (16'd1 << msb_index) + (16'd2 << (msb_index - 2));

wire [15:0] t3 = (16'd1 << msb_index) + (16'd3 << (msb_index - 2));

wire [31:0] c0 = base;

wire [31:0] c1 = (base * 32'h0000_CCCC) >> 16;

wire [31:0] c2 = (base * 32'h0000_ABAB) >> 16;

wire [31:0] c3 = (base * 32'h0000_9249) >> 16;

wire [31:0] init_x = (abs_div == 0) ? 32'd0 :

(power_of_two) ? base :

(abs_div < t1) ? c0 :

(abs_div < t2) ? c1 :

(abs_div < t3) ? c2 : c3;

\end{lstlisting}

From the above code, it can be seen that the low-precision LUT scheme only selects one of the
few pre-estimated values (c0 - c3) based on the interval where the divisor is located. Compared with
the fine-grained lookup of the 16-item LUT, this method has lower hardware overhead, but the
initial value error is larger and requires more iterations to correct the error. Conversely, when using
the 16-item LUT, the initial values for each interval are closer to the true reciprocal, with smaller
errors. The Newton iteration only requires a few steps to achieve high precision. Therefore, we set
the upper limit of the iteration to 5.

This difference directly affects the throughput performance: In our pipeline implementation, each
iteration requires a fixed number of clock cycles (for example, completing one iteration of
multiplication and update through four stages of pipeline_phase takes one iteration). As the number
of iterations increases, the total number of clock cycles required to complete a division operation
also increases accordingly. Taking this design as an example, the 5-iteration scheme requires
approximately 20 (5×4 = 20) clock cycles for each division, while the 8-iteration scheme requires 32
clock cycles. The gap is significant. If computationally intensive applications require higher division
throughput, we tend to use more accurate initial LUTs to reduce iterations. However, at the same
time, larger LUTs (such as 16-entry tables) also mean an increase in resource usage (requiring more
constants to be stored or more complex combinational logic). Fortunately, in this design, the 16×32-
bit lookup table overhead is very small, and it can be exchanged for a significant reduction in the
number of iterations by using a small amount of logic resources.

In conclusion, we made a compromise choice in terms of throughput and resource optimization:
by moderately increasing the precision of the lookup table to reduce the number of iterations, and by
slightly increasing the hardware resources to achieve performance improvement [18]. We selected
the 4-bit LUT index (16 entries) scheme, enabling the system to reach the required accuracy in only



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

64

5 iterations, achieving a high division operation throughput rate, while the resource overhead
remained within an acceptable range. In contrast, if a smaller LUT was used, although a little
storage of the lookup table was saved, the number of iterations increased to 8, and the unit operation
delay and total resource consumption might actually increase (more registers and arithmetic units
operating repeatedly). Therefore, this design optimizes the initial estimation by increasing the bit
width of the LUT, achieving a balance between hardware resources and computation delay, and thus
achieving a win-win situation in terms of throughput and resource efficiency.

5. Analysis and implementation of the goldschmidt division algorithm

After completing the study of the Newton-Raphson algorithm, I also investigated new algorithms
that can be used as the core principle for constructing a divider. The Goldschmidt algorithm also
converts division into a multiplication problem. Its idea is to make the divisor approach 1 through
iterative multiplications, and make the dividend converge to the quotient. First, the initial reciprocal
approximation x0 is calculated based on the most significant bit (msb) of the divisor (for example,
init_x = 1<<(16-msb) to obtain the 1/d estimation in Q16.16 format), then the correction factor    
from equation (8) is iteratively calculated and equation (9) is updated. After the iteration, d
approaches 1, and at this point, n is the quotient [19].

(8)

(9)

In terms of code implementation, the module first takes the absolute values of the dividend and
the divisor, identifies the most significant bit (MSB) of the divisor, and calculates the initial
approximate reciprocal x0:
\begin{lstlisting}[language=Verilog]

wire [31:0] init_x = (abs_d != 0) ? (32'd1 << (16 - msb)) : 32'd0;

x0 <= init_x;

\end{lstlisting}

The above code generates the 1/d initial value x0 in the Q16.16 format based on 
the most significant bit. In the iterative stage, at each step, d_val and n_val 
(obtained through the pipeline) are first calculated, then the correction factor 
g_val is computed, and the next-level approximation is updated through parallel 
multiplication:

\begin{lstlisting}[language=Verilog]

d_val <= pipe_d[47:16];

n_val <= pipe_n[47:16];

g_val <= TWO - pipe_d[47:16];

\end{lstlisting}

In each iteration here, only one subtraction and two parallel multiplications are performed, which
enables the algorithm to converge quickly.

In contrast, the Goldschmidt algorithm requires two parallel multipliers for each iteration,
although it is fast, the hardware resource consumption is relatively high. While the Newton-Raphson

g

g = 2  −  di

{
di+1 = di * g

ni+1 = ni * g



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

65

iterative method only needs one multiplier to approximate 1/d, the hardware structure is simpler.
Therefore, in this design, the Newton-Raphson iterative method is ultimately adopted to replace the
Goldschmidt algorithm in order to reduce the hardware complexity and resource consumption [20].

6. Comparison and summary

Compared to the baseline version, the optimized Newton-Raphson divider (implemented in Verilog)
has undergone multiple improvements in both structure and functionality. Firstly, the finite state
machine (FSM) structure has been replaced by a clearer counter adding pipeline combination,
making the timing and convergence process easier to analyze; the symbol processing has been
changed from implicit to explicit, making the symbol boundaries clearer. Secondly, the lookup table
(LUT) approximation method is used to replace the initial guess value calculation for division,
improving the reliability. Additionally, by eliminating the non-structured termination judgment and
introducing a fixed number of iterations, the verification process has been simplified and is more
conducive to pipeline implementation. Finally, it supports the conversion from integers to the signed
Q16.16 fixed-point format. In other words, the design has moved from "usable" to truly
"deployable".

References

[1] Mannatunga, K.S. and Perera, M.D.R. (2016) Performance Evaluation of Division Algorithms in FPGA.
[2] Bajger, M. and Omondi, A. (2008) Low-error, high-speed approximation of the sigmoid function for large FPGA

implementations. Journal of Signal Processing Systems, 52(2), 137–151.
[3] Schulte, M.J., Omar, J. and Swartzlander, E.E. Jr. (1994) Optimal Initial Approximations for the Newton-Raphson

Division Algorithm. Computing, 53(3), 233-242.
[4] Chunduri, K.C. and Gutti, C. (2005) Implementation of Adaptive Filter Structures on a Fixed Point Signal

Processor for Acoustical Noise Reduction.
[5] Chang, C.-H., Chen, S.-H., Chen, B.-W., Wang, J.-C. and Wang, J.-F. (2013) A division-free algorithm for fixed-

point power exponential function in embedded system. In: 2013 1st International Conference on Orange
Technologies (ICOT), 223–226.

[6] Adamczyk, P. (2003) The anthology of the finite state machine design patterns. In: The 10th Conference on Pattern
Languages of Programs.

[7] Wang, L.-K. and Schulte, M.J. (2007) A decimal floating-point divider using Newton–Raphson iteration. The
Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 49(1), 3–18.

[8] Ito, M., Takagi, N. and Yajima, S. (1995) Efficient Initial Approximation and Fast Converging Methods for
Division and Square Root. In: Proceedings of the 12th Symposium on Computer Arithmetic, 2–9.

[9] Barabanov, A., Bombana, M., Fominykh, N., Gorla, G. and Terekhov, A. (1996) Reusable Objects for Optimized
DSP. Embedded Microprocessor Systems, 433.

[10] Kalli, S. and Priya, S.C. (2024) Karatsuba Algorithm: A Paradigm Shift in Multiplication Efficiency. International
Conference on Electrical and Electronics Engineering. Singapore: Springer Nature Singapore, 477-487.

[11] Marimuthu, C.N., Thangaraj, P. and Ramesan, A. (2010) Low power shift and add multiplier design. arXiv preprint
arXiv: 1006.1179.

[12] Black, W.C. and Hodges, D.A. (1979) Time-interleaved converter arrays. IEEE Journal of Solid-State Circuits,
15(6), 1022–1029.

[13] Ramamoorthy, C.V. and Li, H.F. (1977) Pipeline Architecture. ACM Computing Surveys (CSUR), 9(1), 61–102.
[14] Passes, N.L., Sha, E.H.-M. and Chao, L.-F. (1995) Multi-dimensional interleaving for time-and-memory design

optimization. Proceedings of ICCD’95 International Conference on Computer Design: VLSI in Computers and
Processors, 440–445.

[15] Louvet, N., Muller, J.-M. and Panhaleux, A. (2010) Newton–Raphson algorithms for floating-point division using
an FMA. In: ASAP 2010—21st IEEE International Conference on Application-specific Systems, Architectures and
Processors, 200–207. IEEE.

[16] Meher, P.K. (2010) LUT optimization for memory-based computation. IEEE Transactions on Circuits and Systems
II: Express Briefs, 57(4), 285–289.



Proceedings	of	CONF-FMCE	2025	Symposium:	Semantic	Communication	for	Media	Compression	and	Transmission
DOI:	10.54254/2755-2721/2025.GL28013

66

[17] Crisfield, M.A. (1979) A faster modified Newton–Raphson iteration. Computer Methods in Applied Mechanics and
Engineering, 20(3), 267–278.

[18] Kim, T.S., Rhee, C.E. and Lee, H.J. (2019) Fast hardware-based IME with an idle cycle and computational
redundancy reduction. IEEE Transactions on Circuits and Systems for Video Technology, 30(6), 1732–1744.

[19] Singh, N. and Sasamal, T.N. (2016) Design and Synthesis of Goldschmidt Algorithm Based Floating Point Divider
on FPGA. 2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, 1286-1289.

[20] Paim, G., Marques, P., Costa, E., Almeida, S. and Bampi, S. (2017) Improved Goldschmidt algorithm for fast and
energy-efficient fixed-point divider. In: 2017 24th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), 482–485.


