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Deep learning has advanced image recognition, achieving strong results in medical
imaging, autonomous driving, and security. Yet significant bottlenecks still limit
deployment. This paper reviews three main challenges: weak robustness, high computational
demands, and reliance on large labeled datasets. Recent studies identify the causes of these
issues, including growing model complexity, distribution shifts between training and real
data, and lack of security-aware design. To address these problems, various strategies have
been developed in the past five years. For robustness, adversarial training, data
augmentation, and domain adaptation have been widely applied. To enhance the efficiency
of deep learning models, techniques including network pruning, parameter quantization, and
lightweight architectures (e.g., MobileNet and EfficientNet) are widely adopted—often
augmented by knowledge distillation and hardware-aware neural architecture search (NAS).
To mitigate reliance on large-scale labeled datasets, approaches such as transfer learning,
self-supervised learning frameworks (e.g., SImCLR and BYOL), and multimodal models
(e.g., CLIP) have demonstrated promising performance. While progress is evident, trade-
offs remain. Future work should focus on combining these strategies to achieve models that
are simultaneously accurate, efficient, and robust for real-world applications.
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Image recognition is a fundamental task in computer vision, with applications in healthcare,
autonomous driving, and security surveillance [1,2]. Recent advancements in deep learning,
particularly convolutional neural networks (CNNs) and vision transformers (ViTs), have
substantially improved recognition accuracy on large-scale benchmarks [3-5]. These models now
achieve state-of-the-art performance and are increasingly deployed in practice.

Despite this progress, several challenges remain for real-world deployment. A primary concern is
robustness: models that perform well in controlled environments often fail when exposed to noise,
occlusion, or adversarial perturbations [6]. In addition, modern architectures typically contain tens
of millions of parameters, leading to high computational and storage requirements that hinder
deployment on mobile or embedded devices [7,8]. Finally, these models heavily rely on large
annotated datasets, which are costly and time-consuming to obtain, particularly in specialized
domains such as medical imaging and satellite monitoring [9].
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This paper reviews these three critical bottlenecks in deep learning—based image recognition:
robustness, efficiency, and data dependence. While previous surveys have broadly examined
robustness in computer vision [5] and efficiency-oriented techniques [7,8], few have considered the
combined challenges addressed here. By synthesizing recent studies, this review identifies the
causes of these limitations and evaluates strategies proposed in the past five years to mitigate them.
The findings provide insights for guiding future research and advancing more robust, efficient, and
scalable image recognition systems.

Deep learning has dramatically advanced image recognition, yet robustness remains one of its
weakest points. Models that achieve over 90% accuracy on clean benchmark datasets can fail
catastrophically when exposed to subtle changes. Wang et al. [6] classify robustness issues into
adversarial robustness, corruption robustness, and distributional robustness, showing that many
state-of-the-art models score far lower in stress tests than on benchmarks. For instance, a ResNet-50
trained on ImageNet can lose more than 40% Top-1 accuracy under Gaussian noise or JPEG
compression, despite performing well on the clean test set.

Adversarial examples are the most widely discussed form of fragility. Small, carefully designed
pixel-level perturbations-often invisible to humans-can cause misclassifications with high
confidence. Javed et al. [1] highlight the implications in medical imaging: chest X-ray classifiers
that detect pneumonia correctly in controlled environments may fail once adversarial noise is
introduced, risking serious clinical consequences [1]. Similar vulnerabilities have been demonstrated
in autonomous driving, where simply adding inconspicuous stickers to a stop sign can cause
misrecognition, potentially leading to accidents.

Robustness is also challenged by natural variations. In practice, lighting conditions, partial
occlusions, or sensor-specific artifacts degrade model performance significantly. Balendran et al. [2]
observe that medical imaging systems trained on high-quality hospital data often underperform on
community-acquired datasets with lower resolution or inconsistent preprocessing. Attempts to
address these gaps, such as extensive data augmentation or domain adaptation, help but do not fully
resolve the issue.

These observations demonstrate that although deep learning models achieve high accuracy under
ideal conditions, they remain structurally brittle in real-world operational scenarios—thereby
constraining their deployment in high-stakes application domains.

Another critical bottleneck in deep learning—based image recognition lies in the computational and
storage demands of modern architectures. As models become deeper and wider, their parameter
counts and memory requirements rise dramatically. For example, ResNet-152 contains roughly 60
million parameters, while recent Vision Transformers (ViTs) and Swin Transformers can exceed 80—
100 million [3]. This scale translates into billions of floating-point operations (FLOPs), making
training and inference both time-consuming and energy-intensive. While such models perform
impressively on benchmarks like ImageNet, their deployment on mobile devices, surveillance
cameras, or medical imaging equipment remains highly impractical.
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The issue becomes more acute in real-time applications. In autonomous driving, for instance,
vehicle perception systems must process high-resolution video streams at 30 frames per second or
more. However, large networks introduce inference delays that jeopardize safety. Similarly, in
telemedicine and portable health monitoring, devices with limited hardware struggle to support such
computationally heavy models. Liu et al. [4] emphasize that the high training costs—often requiring
hundreds of GPU hours—are an additional barrier, particularly for research groups or organizations
with limited resources.

Beyond cost and speed, there is also the environmental impact. Training a single large model can
emit as much carbon as several cars over their lifetime. Paula et al. [7] compare model compression
strategies and demonstrate that pruning and quantization can reduce energy usage by up to 50%,
with minimal accuracy loss. Khan et al. [8] further highlight hardware-aware optimization as an
emerging direction for sustainable AI. While cloud computing can offload part of the workload,
transmitting large amounts of image data raises latency and privacy concerns, particularly in
healthcare. Thus, efficiency is not simply an optimization problem—it is central to whether deep
learning systems can be deployed safely and responsibly at scale.

A further obstacle to the widespread deployment of deep learning in image recognition is its heavy
reliance on large, labeled datasets. Landmark datasets such as ImageNet and MS-COCO have
enabled enormous progress in computer vision, but they are not representative of many specialized
domains. In medical imaging, for example, creating labeled datasets requires expert radiologists to
annotate CT or MRI scans, which is both costly and time-consuming. Trigka [9] notes that this
scarcity of annotated data has slowed the adoption of deep learning methods in healthcare, despite
their potential benefits. Similar challenges exist in satellite and remote-sensing applications, where
images often need expert geoscientists to provide accurate ground-truth labels.

Even when annotated data is available, domain shift remains a significant issue. Models trained
on one dataset may fail to generalize to new conditions. For instance, face recognition systems
trained on high-quality, balanced datasets often misclassify in surveillance environments with poor
lighting and lower resolution. Likewise, a diagnostic model trained on chest X-rays from one
hospital may lose accuracy when applied to data from another due to differences in imaging devices,
preprocessing protocols, or patient demographics. These mismatches demonstrate that the success of
deep learning in controlled environments often does not translate smoothly to real-world scenarios.

Techniques such as transfer learning and data augmentation have reduced the demand for
extensive labeling, but they do not fully eliminate the problem. More recently, self-supervised
learning and multimodal representation learning have emerged as promising approaches to leverage
vast amounts of unlabeled data. However, as Trigka [9] emphasizes, ensuring these methods achieve
consistent reliability across domains remains a critical challenge.

The pursuit of higher accuracy has encouraged researchers to design increasingly deep and wide
architectures. This growth in complexity leads to a dramatic rise in the number of parameters and
floating-point operations, which significantly inflates computational demands and memory usage
[3]. As a result, large parameter spaces make optimization more difficult: gradient updates become
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less stable, and training requires careful regularization to avoid divergence. In addition, highly
complex models tend to overfit when data is limited, as they memorize training patterns rather than
learning robust representations. Liu et al. [4] emphasize that the relationship between model
capacity and generalization is nonlinear—beyond a certain threshold, additional parameters offer
marginal accuracy gains while sharply increasing computational and storage costs. Thus, model
complexity itself becomes a structural source of inefficiency and fragility.

3.2. Data distribution shift

A second cause of bottlenecks is the violation of the fundamental assumption in supervised learning:
that training and test data are drawn from the same distribution. In reality, this assumption rarely
holds. Image data collected in different settings can vary in resolution, color balance, noise level, or
background patterns. When the statistical properties of input data shift, models trained on one
dataset fail to generalize because they have learned correlations specific to the training distribution
rather than universal features. Trigka [9] points out that this is not simply a lack of data volume, but
a mismatch in data distributions, which undermines the stability of learned representations. Unlike
the challenges outlined in Section 2, which highlight empirical performance drops, the deeper cause
here is that deep learning models lack inherent mechanisms for adaptation to out-of-distribution
Inputs.

3.3. Lack of security-aware design

Finally, many deep learning systems are developed with a singular optimization goal: maximizing
predictive accuracy on clean datasets. This design philosophy neglects adversarial robustness and
security considerations. Wang et al. [6] note that the loss functions commonly used in training do not
incorporate robustness terms, leaving models vulnerable to imperceptible perturbations.
Furthermore, standardized evaluation protocols for robustness are still underdeveloped, meaning
that weaknesses remain hidden until deployment. Javed et al. [1] argue that this issue reflects a
cultural bias in Al research toward benchmark accuracy, rather than a holistic consideration of
reliability. The absence of robustness-aware design means that even models with excellent accuracy
can be destabilized by small perturbations, which explains why adversarial and noisy conditions
create such disproportionate performance degradation.

4. Solutions and strategies
4.1. Improving robustness

Improving the robustness of deep learning models has become a central research focus, as fragile
models limit the reliability of image recognition in safety-critical contexts. A key line of defense is
adversarial training, where models are exposed to adversarially perturbed examples during training.
Wang et al. report that such training paradigms substantially enhance model resilience against
gradient-based adversarial attacks [6]. However, this improvement is achieved at the expense of
prolonged training duration and elevated computational requirements. Despite these inherent trade-
offs, adversarial training remains among the most effective strategies for mitigating deliberate input
perturbations.

Beyond adversarial defenses, data-centric approaches play an equally important role.
Augmentation methods such as Cut Mix, Mix Up, and Auto Augment artificially expand training
sets by creating diverse variations of the data. Javed et al. [1] show that these techniques enhance
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robustness not only against synthetic perturbations but also against natural variations like lighting
changes or occlusions. More advanced strategies leverage generative adversarial networks (GANs)
to create realistic synthetic samples, which help models generalize better in domains where
annotated data is scarce.

Another promising development is domain adaptation and domain generalization, which reduce
sensitivity to dataset shifts. Balendran et al. [2] highlight how multi-site training in medical imaging
—combining data from different hospitals—improves generalization across institutions.
Additionally, robust optimization techniques such as randomized smoothing and certified defenses
aim to provide formal guarantees on model behavior under perturbations.

In practice, no single method is sufficient on its own. Combining adversarial training with data
augmentation and domain adaptation offers a more comprehensive path forward. However, these
improvements often come with increased training cost, leaving open the question of how to balance
robustness with efficiency-an issue further explored in Section 4.2.

Improving efficiency is crucial for deploying deep learning models in real-world environments
where computational resources and energy budgets are limited. A primary strategy is model
compression, which reduces redundancy in neural networks. Network pruning techniques involve
the removal of non-critical weights or neurons from deep neural networksstudies have demonstrated
that convolutional neural networks (CNNs) can undergo pruning ratios of up to 90%while incurring
only minimal degradation in model accuracy [3]. Quantization is another common method, lowering
memory and computational requirements by converting 32-bit floating-point parameters into 8- or
even 4-bit integers. Together, pruning and quantization can dramatically reduce inference time and
storage needs.

In parallel, lightweight architectures has been designed specifically for constrained devices.
Models such as MobileNet [10], ShuffleNet, and EfficientNet provide strong accuracy while
reducing the number of parameters and floating-point operations (FLOPs) by orders of magnitude.
Liu et al. [4] emphasize that these networks achieve competitive ImageNet performance with far
fewer resources than traditional ResNets, making them practical for mobile applications and
embedded systems.

Another promising method is knowledge distillation, where a large “teacher” model guides a
smaller “student” model to mimic its outputs. Paula et al. [7] reports that this approach maintains
much of the teacher’s accuracy while drastically lowering computational demands. More recently,
hardware-aware neural architecture search (NAS) has gained traction, automatically designing
models optimized for specific hardware platforms.

Despite these advances, trade-offs remain. Compressed or lightweight models may lose fine-
grained recognition ability, and training with distillation adds complexity. Combining compression,
lightweight design, and hardware-aware optimization offers a practical path to balance accuracy and
efficiency.

Another major line of research seeks to reduce the heavy reliance of deep learning models on large
labeled datasets. Transfer learning is a widely adopted strategy, where models pretrained on large
datasets such as ImageNet are fine-tuned on smaller domain-specific datasets. This method has
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proven effective in fields like medical imaging, where annotated data is scarce but pretrained
weights provide strong initialization [9].

Beyond transfer learning, self-supervised learning has emerged as a powerful alternative to
supervised training. Techniques such as SImCLR, BYOL, and MoCo learn representations from
unlabeled data by solving pretext tasks, such as predicting whether two image augmentations come
from the same original image. These methods allow models to leverage massive collections of
unlabeled images, significantly reducing annotation requirements. Trigka [9] notes that self-
supervised frameworks have shown promise in healthcare and satellite imagery, where labeled data
is particularly limited.

A third promising approach is multimodal learning, where models jointly process image and text
data. CLIP, for example, is trained on hundreds of millions of image—text pairs and generalizes well
across tasks without task-specific supervision. Such models exploit the abundance of text data
available on the web, indirectly reducing dependence on labeled images.

Deep learning has transformed image recognition, delivering state-of-the-art performance across
diverse domains such as healthcare, autonomous driving, and security. However, this review has
shown that significant challenges remain for practical deployment. Three primary bottlenecks—
limited robustness, high computational and storage costs, and strong dependence on large labeled
datasets—continue to restrict the reliability and scalability of current models. These limitations arise
from increasing model complexity, domain distribution shifts, and the absence of robustness- or
security-aware design.

A wide range of strategies have been proposed to address these issues. Robustness can be
improved through adversarial training, advanced data augmentation, and domain adaptation,
although these methods often increase training complexity. Efficiency has been enhanced by model
compression, lightweight architecture, and knowledge distillation, enabling deployment on mobile
and embedded devices while also reducing the environmental cost of training. Finally, dependence
on labeled data is being mitigated through transfer learning, self-supervised methods, and
multimodal learning, which exploit vast pools of unlabeled or weakly labeled data.

Despite this progress, trade-offs remain. Improving robustness often comes at the expense of
computational cost, while efficiency-oriented techniques may reduce accuracy. Similarly, self-
supervised methods demand substantial pretraining resources. Looking ahead, integrating these
strategies into unified frameworks will be essential for balancing accuracy, robustness, and
efficiency. Moreover, advances in multimodal learning, privacy-preserving computation, and
explainable Al are likely to shape the next generation of image recognition systems.

In summary, deep learning has advanced, but building models that are accurate, efficient, and
robust remains a challenge. Continued research will be critical for safe and scalable deployment.
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