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This study investigates key predictors of diabetes risk across non-diabetes,
prediabetes, and diabetes categories, while developing an optimal prediction model using
multiple machine learning algorithms. Biomedical indicators such as HbAlc, urea, and
creatinine, along with demographic factors like age and gender, were analyzed to evaluate
their predictive value. Among the five algorithms tested, ensemble learning methods
(CatBoost and XGBoost) outperformed traditional models, with CatBoost achieving the
highest accuracy and demonstrating superior robustness. Feature importance analysis
identified HbAlc as the most influential predictor, followed by age and BMI, aligning with
established medical knowledge, whereas gender contributed minimally. The findings
highlight the potential of advanced machine learning models, particularly CatBoost, in
delivering highly accurate and stable diabetes risk prediction. This research provides strong
technical support for early screening, targeted intervention, and practical risk assessment in
diabetes management.
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Diabetes is a chronic metabolic disease characterized by persistent hyperglycemia and has become a
major global public health challenge. According to statistics from the World Health Organization
(WHO), the global prevalence of diabetes among adults aged 20-79 has reached 14%, with more
than 800 million confirmed cases, a fourfold increase over 1990 [1]. By 2024, global diabetes-
related medical expenditure is expected to exceed US $1 trillion, accounting for 12% of global
health expenditure, which not only increases the economic burden on patients’ families but also
impacts public health systems [2]. Accurate identification of prediabetes and early prediction are
core to prevention and control.

Complex factors influence diabetes and rely on assumptions of linearity and variable
independence, struggle to capture synergistic effects between features, and have weak multi-
dimensional data fusion capabilities. Its missed diagnosis rate can reach 30%, failing to meet the
needs of precise screening [3]. It can efficiently integrate multi-dimensional data, explore non-linear
correlations between features, and ensure interpretability through feature importance analysis.

Based on this, this study uses the Diabetes Prediction Dataset from Kaggle to explore core
influencing factors of prediabetes via machine learning, construct and optimize risk prediction
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models, select the most interpretable optimal model, and provide a practical tool for early
prediabetes screening to reduce the risk of progression to type 2 diabetes [4].

2. Literature review
2.1. Review of previous studies on machine learning algorithms for diabetes prediction

In diabetes prediction research, the evolution of machine learning applications progresses from
traditional single models to more sophisticated ensemble methods. Conventional algorithms such as
Logistic Regression, Decision Trees, and k-Nearest Neighbors are widely adopted in earlier studies
owing to their conceptual simplicity and high interpretability. However, subsequent research reveals
notable performance limitations of these individual models. A major issue stems from the inherent
characteristics of real-world medical data, which often contain high rates of missing values, noise,
and inconsistencies. The absence of critical clinical indicators, such as HbAlc and OGTT, can
substantially impair model performance [5]. Traditional statistical methods (e.g., mean imputation)
fail to handle complex missing data, limiting model performance.

Ensemble learning effectively addresses these limitations. Voting-based ensemble models, for
instance, demonstrate improves prediction accuracy through multi-model fusion [6]. CatBoost
excels at automatically processing categorical features, maintaining stable performance in samples
with discrete variables, and solving the problem of categorical feature encoding in traditional
algorithms. XGBoost further optimizes performance through regularization mechanisms, achieving
high accuracy with feature importance rankings consistent with clinical consensus. Zhang et al.
further optimized XGBoost by addressing its cumbersome parameter tuning and tendency to fall into
local optima: they introduced a genetic algorithm for global parameter search (using MSE as the
fitness function), and the optimized model outperforms both traditional algorithms and default-
parameter XGBoost [7]. However, large prediction deviations for rare high blood glucose values and
room for optimization in runtime should be addressed.

Overall, previous studies share common limitations, including insufficient algorithm comparison,
rough data preprocessing, and inadequate integration of medical knowledge. By comparing five
algorithms (Logistic Regression, Decision Tree, KNN, CatBoost, XGBoost) and combining strict
data cleaning with medical cognition verification, this study aims to construct a more accurate and
stable prediction model.

2.2. Supplementary applications of machine learning algorithms in medical prediction

Machine learning excels at processing complex data and capturing correlations. It is widely used for
risk prediction in fields such as cardiovascular and cerebrovascular diseases, cancer, and infectious
diseases, and performs significantly better than traditional methods.

In chronic kidney disease (CKD) prediction, Liu et al. used CatBoost to forecast 2-year end-stage
renal disease (ESRD) risk, achieving high accuracy and clinical utility [8]. For myocardial infarction
(MI) risk, XGBoost outperformed traditional methods in identifying high-risk groups and explaining
prediction logic [9].

Machine learning offers universal advantages in medical prediction, as it can integrate multiple
types of data, capture correlations between indicators, and achieve high accuracy with fewer
misjudgments including missed judgments, and erroneous judgments compared to traditional
methods.
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3. Methodology
3.1. Algorithm principles
3.1.1. K-Nearest Neighbors (KNN)

KNN is an inert supervised learning algorithm based on sample similarity to determine category
attribution. It lacks an explicit model training process, relying solely on stored training data for
prediction. The approach utilizes Euclidean distance as the standard for similarity quantification,
which requires determining the hyperparameter K through cross-validation to balance the ability to
capture local features with resistance to noise interference. Finally, the K nearest neighbor samples
with the smallest distance are selected from the predicted samples, and their categories are deduced
based on the majority voting rule. It is a probability voting process based on the distribution of local
samples.

3.1.2. CatBoost

CatBoost is an improved ensemble learning algorithm based on Gradient Boosting Decision Trees
(GBDT), optimized for categorical feature processing and bias control. It realizes classification by
iteratively constructing a weighted ensemble of CART trees. For non-numeric categorical features, it
adopts ordered ranking encoding based on the mean value of the target variable, which completes
numerical conversion while preserving logical relationships between categories. Through the
“ordered boosting” strategy, it calculates gradients using the complete training set to reduce bias
caused by sample splitting in traditional GBDT. Additionally, it suppresses overfitting via three
regularization mechanisms: tree complexity restriction, learning rate adjustment, and random
subspace sampling. It is suitable for modeling scenarios with small samples and multiple categorical
features.

3.1.3. Extreme Gradient Boosting (XGBoost)

XGBoost is a theoretically optimized and engineering-enhanced version of GBDT, focusing on
accurate loss function optimization and robustness improvement. It iteratively corrects errors of
previous models through an additive model. Breaking the limitation of traditional GBDT using only
first-order derivatives, XGBoost introduces second-order derivatives (Hessian) and approximates
the loss function as a quadratic Taylor polynomial for more precise error optimization. It can
automatically learn the optimal splitting path for missing values during training and improve
computational efficiency via feature parallelism and sparse-aware optimization. It is suitable for
modeling scenarios with multiple features and missing values.

3.2. Data preprocessing
3.2.1. Data cleaning

Data cleaning focused on correcting outliers and unreasonable values in the original dataset to
ensure data consistency with reasonable ranges of physiological indicators and improve data
accuracy. Specific operations included:

Correcting abnormal physiological indicator values: Adjusting values exceeding normal
physiological ranges for indicators such as urea, creatinine (Cr), high-density lipoprotein (HDL),
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very low-density lipoprotein (VLDL), and cholesterol (Chol).

Addressing data consistency issues: Calibrating unreasonable values caused by potential input
errors (e.g., abnormally high/low values of VLDL and triglycerides [TG]) based on reasonable
ranges to avoid interference of extreme values on subsequent analysis.

Data formatting focused on data type conversion, removal of irrelevant variables, and numerical
encoding of categorical variables to provide numerical data suitable for subsequent modeling.
Specific operations included:

Numerical encoding of categorical variables: Converting character-type categorical variables to
numerical variables: Gender (gender): 0 for female (original: F), 1 for male (original: M). CLASS
(diabetes status): 0 for Non-diabetic (original: N), 1 for Prediabetic (original: P), 2 for Diabetic
(original: Y). This solved the problem that character-type variables cannot be directly used for
modeling.

Removing irrelevant identifier variables: Deleting ID and No_Pation columns (both are unique
sample identifiers with no correlation to diabetes) to simplify feature dimensions and reduce
interference of redundant information on the model.

Ensuring data format consistency: Unifying data types of all features, aligning numerical
indicators with encoded categorical variables to lay a foundation for subsequent machine learning
model training and statistical analysis.

To determine the optimal parameters for the training model, this study uses a grid search method
with 5-fold cross-validation [10]. Grid search exhaustively tests all possible hyperparameter
combinations by defining the hyperparameters to be adjusted and their possible value ranges,
ultimately selecting the combination with the best performance. Accuracy is used as the core
evaluation metric for optimal parameter selection during grid search. In the subsequent test phase,
this study uses multiple metrics, Accuracy, Recall, Precision, F1, and AUC-ROC for verification.
The main adjusted model parameters and their value ranges are shown in Table 1.
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Table 1. Adjusted parameters and value ranges of each model

Model Parameters Value Range
Logistic C (regularization strength) [0.01,0.1,1,10]
Regression Penalty (regularization method) ['11°,"12°]
max_depth (maximum tree depth) [3,5,7, None]
.. min_samples_leaf(min samples per leaf [1,5,10]
Decision Tree node) [gini (Gini coefficient),entropy (information,
criterion (splitting criterion) entropy)]
n_neighbors [1,3,5.7.9]
KNN _weigh ts ['uniform’ (equal we¥ght), distance’(distance-
(distance metric) weighted)]
P [1 (Manhattan distance),2 (Euclidean distance)]
iterations [100,200,1000]
CatBoost learning_rate [0.01,0.1,0.3]
depth (tree depth) [3,5]
n_estimators (number of decision trees) [100,200,1000]
XGBoost learning_rate [0.01,0.1,0.3]
max_depth [3,5,7]

4. Experiment
4.1. Experimental design

First, the dataset was split using Python’s train test split function, with 80% allocated to the
training set and 20% to the test set. random_state=42 was set to ensure experimental reproducibility.

Logistic Regression and Decision Tree served as basic prediction methods for result comparison.
KNN, CatBoost, and XGBoost were the core research objects, with hyperparameters optimized via
grid search (GridSearchCV), with five-fold cross-validation (target: accuracy). Subsequently, the
optimal model of each algorithm was evaluated on the test set, and accuracy, macro-averaged recall,
macro-averaged precision, macro-averaged Fl-score, and multi-class AUC-ROC were calculated.
Feature importance was extracted and visualized for four models (Decision Tree, CatBoost,
XGBoost, and Logistic Regression). Finally, the optimal prediabetes prediction model was selected
based on comprehensive evaluation metrics.

4.2. Analysis of feature importance

As shown in Figure 1, feature importance rankings across the four models (Logistic Regression,
Decision Tree, CatBoost, and XGBoost) exhibit both consistencies and reasonable differences, all of
which align closely with clinical knowledge and validate key diabetes risk factors.

HbA ¢ is consistently identified as the most important predictive feature in all models, reflecting
its status as an internationally recognized gold standard for diabetes diagnosis. As it indicates
average blood glucose levels over the past 2—3 months, thereby validating the feature selection
approach in this study [11].

Beyond HbAlc, the hierarchy of influencing factors reflects clinically relevant patterns.
Ensemble models emphasize the significance of age, corroborating the notion that “individuals over
40 belong to the high-risk group for diabetes.” In the Decision Tree model, BMI ranks second in
importance, supporting the clinical understanding that obesity-induced insulin resistance is a core
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mechanism in type 2 diabetes pathogenesis [12]. The importance of blood lipid and renal function
indicators varies complementarily across models, illustrating the systemic nature of metabolic
dysregulation and the ability of different algorithms to capture distinct correlation patterns.

In contrast, gender is the least important feature in all models, indicating that its influence on
diabetes onset is negligible compared to core physiological, metabolic, and demographic factors
(age, BMI). This observation is consistent with previous studies that found no significant impact of
gender on incidence rates or mortality [13]. Therefore, gender need not be considered a core
indicator in diabetes screening. Differences in secondary feature weights, such as linear models
focusing on linear correlations of blood lipid indicators and ensemble models emphasizing
interactions between age and renal function indicators are inherent to algorithmic principles and do
not alter the identification of central risk factors.

Figure 1. Model feature importance under optimal parameters
4.3. Model performance comparison

Table 2 presents the test set performance metrics of each model under optimal parameter
configuration. The models exhibited a clear hierarchy: ensemble learning models
(CatBoost,XGBoost) > single-tree model (Decision Tree) > lazy learning model (KNN) > linear
model (Logistic Regression). Ensemble learning models performed particularly well in metrics
critical to medical scenarios.

Table 2. Test set performance metrics of each model

Model Accuracy Recall Precision F1 AUC-ROC
Logistic Regression 0.900 0.598 0.567 0.582 0.941
Decision Tree 0.975 0.967 0.967 0.967 0.970
KNN 0.950 0.934 0.832 0.869 0.995
CatBoost 0.993 0.997 0.986 0.991 0.999
XGBoost 0.987 0.994 0.974 0.984 0.999

Among all models, CatBoost stood out: it achieved 0.993 accuracy, 0.997 recall (nearly zero
missed diagnosis), 0.986 precision (high prediction credibility), plus the highest macro-averaged F1-
score 0.991 and multi-class AUC-ROC 0.999. It fully meets diabetes prediction’s core needs: low
missed diagnosis rate, low misdiagnosis rate, and stable classification.
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For other models: XGBoost matched CatBoost in AUC-ROC but performed slight worse in core
accuracy and recall. Decision Tree, KNN, and Logistic Regression were inferior overall. In
particular, Logistic Regression failed to capture non-linear feature correlations, leading to poor
performance ( accuracy 0.900, recall 0.598). Notably, AUC-ROC in medical scenarios must be
comprehensively judged with specific classification indicators and cannot be used as the sole
evaluation criterion. Thus, the CatBoost model is determined to be highly accurate and stable,
making it the optimal high-performance prediction model.

Although this study constructed and selected an optimal diabetes prediction model using multiple
algorithms, it has notable limitations in model design and applicability, mainly in two aspects.

Insufficient data support and limited generalization ability. The model relies on single-source data
(from Kaggle), which has significant flaws: Lack of labels for region, ethnicity, economic status, and
underlying diseases,f ailing to cover population heterogeneity in diabetes onset. This leads to
reduced generalization performance of the model in specific populations.

No longitudinal time-series data in the dataset. Feature processing is confined to basic operations,
such as variable encoding and redundancy removal, with no construction of clinically meaningful
composite features. Moreover, feature selection relies entirely on the built-in mechanisms of
algorithms, without prior screening based on clinical guidelines. This results in insufficient clinical
integrity of the feature system and inaccurate characterization of diabetes pathogenesis.

Future research can advance in four key directions. First, expand multi-source longitudinal data by
incorporating population heterogeneity features and dynamic monitoring indicators [14]. Second,
construct composite indicators based on clinical needs, optimize feature dimensions, develop
population-specific sub-models and improve interpretability. Thirs, adopts methods such as
knowledge-guided graph attention networks to enhance disease prediction and incorporate medical
knowledge graphs to help infer missing values through graph-based representation learning [15].
Ultimately, promote clinical translation by integrating models into medical systems, developing
lightweight tools, and conducting prospective verification to support diabetes prevention and
control, ultimately reducing disease burden.

Using the Diabetes Prediction Dataset from Kaggle, this study first corrected outliers in
physiological indicators, encoded categorical variables, and removed irrelevant variables. Then, five
algorithms (Logistic Regression, Decision Tree, KNN, CatBoost, XGBoost) were used for
modeling, with hyperparameters optimized via five-fold cross-validation combined with grid search.
The model’ performance was evaluated using multiple metrics. Results showed that the ensemble
learning model, CatBoost, performed best, with an accuracy of 0.993 and AUC-ROC of 0.999 on the
test set—outperforming other model types. HbAlc was the primary predictor of diabetes risk, while
the gender had the least impact in the model. This study overcomes the limitations of traditional
linear statistics, provide an efficient technical tool for early diabetes screening and risk assessment,
and clarified the predictive priority of clinical indicators.
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This research also has limitations in terms of data support, feature engineering, and model
interpretability. In the future, improvements can be implemented in the following aspects. First,
collecting multicenter longitudinal data and balancing sample distribution to enhance the model’s
generalization ability. Second, integrating clinical knowledge to construct composite features, screen
indicators based on guidelines, and refine the feature system. Third, leveraging tools such as SHAP
values to quantify the mechanism underlying feature action and improve the model’s interpretability.
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