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This paper explores the potentials of innovative airfoil configurations in
addressing global environmental challenges. Although conventional airfoil designs have
already achieved high aerodynamic efficiency in standard operations, unresolved issues such
as drag at transonic speeds and instability under extreme weather conditions still exist.
Through simulated case studies and literature reviews, this article evaluates how optimized
airfoil could reduce fuel consumption, cut carbon emissions, and improve aircraft stability
across diverse conditions. Specifically, this paper looks into optimization methods like
Computational Fluid Dynamics inside design loops that balance many factors, and newer
ideas such as combining reinforcement learning in wing design. These approaches show
different ways to improve aircrafts’ performance while keeping the focus on environmental
goals. The outcome of this paper demonstrates the technologies that play a critical role in
airfoil’s further advancement. Additionally, this paper emphasizes the necessity of
integrating environmental considerations with engineering advancements, hence suggesting
directions for future sustainable air travel.

Airfoil optimization, sustainable aviation, computational fluid dynamics (CFD),
reinforcement learning (RL)

Air travel has realized human’s ‘flying’ dream and connects economies across continents, but it also
exhibits strong climate impacts. Research shows that the aviation industry contributes roughly 2—3%
of global carbon dioxide emissions, this number, as shown in Fig.1, has been growing for the past
decades and will keep its trend if effective practices do not apply in time [1]. Therefore, it leads to a
critical question: can we redesign the aviation wings to not only enhance performance but also lower
fuel usage and emissions? In fact, we have seen many engineering progress made in the past:
classical research on wingtip devices and non-planar lift systems demonstrates significant reductions
in induced drag in both wind tunnel and analytical studies, and these gains translate into improved
lift-to-drag ratios when structural trade-offs are effectively managed [2,3]. However, limitations
remain. During transonic cruise, shock waves and flow separation increase drag and can cause
buffet; maintaining stability at high angles of air attack or in adverse weather conditions becomes
more challenging—issues critical to both efficiency and safety [4,5].

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

18



Proceedings of CONF-FMCE 2025 Symposium: Semantic Communication for Media Compression and Transmission
DOI: 10.54254/2755-2721/2025.GL28811

1 1 1 1

"] — Giobal total
s00-] — OECD
—— Non OECD

;)

Emissions (Tg YT )

8004 —— Global aviation
CO; emissions

(b) [ = Non-OECD Asia and Oceania (e)
(excl China)
== Non-OECD Europe and Eurasia
= China (incl Hong Kong)
100 | — Africa —
—— Middle East

109 — Revenue Passenger Kilometers (RPK) 120 ]
Available Seat Kilometers (ASK)
—— Aviation transport efficiency

1

Aviation CO, emissions (Tg yr )

RPK and ASK
(10“’ kilometers yr ‘)
~
(¥dy sad 207 By) Aousioy3

~
h

=3
o

—— OECD Americas U]
— OECD Asia and Oceania
300 - OECD Europe -

— Non-QECD Americas
250 3 /\/\\_/ -

200

€ Total CO, with LUC

407 ... Total CO, with no LUC
— Aviation fraction with LUC
=== Aviation fraction with no LUC

150 -

|10} JO UONOEBY) UOHEIAY

100 4

50 —

(%) suoissiwe 20y suebodoiyue

T T T
S = N w A o

o

Anthropogenic CO, emissions (Gt yr“)
S

0 ———r——r———F

1960 1970 1980 1990 2000 2010 2020

8

Figure 1. Data related to the growth of aviation traffic and CO2 emissions from 1940 to 2018.

New methodologies introduce more promising solutions for addressing these problems. The use
of high-fidelity Computational Fluid Dynamics (CFD) within Multidisciplinary Design
Optimization (MDO) loops enables designers to balance aerodynamics with structural weight and
other constraints, moving beyond an isolated pursuit of lift-to-drag ratios [6,7]. Recent research also
shows that machine learning tools, including deep reinforcement learning, can explore shapes
beyond traditional parameterizations and improve aerodynamic metrics; related reinforcement
learning work in active flow control also reduces flow separation [8,9]. At the same time, morphing
and bioengineering concepts offer additional drag reduction and adaptability for various flight
conditions [10]. In all, this paper follows the following logic. First, it reviews CFD-MDO practices
that link geometric changes to system-level benefits. Second, it examines Al-driven and bio-inspired
strategies that expand the design space. Third, it discusses how these concepts perform under real
operational conditions, such as transonic buffet and stability margins. The fundamental argument of
this paper is clear: rethinking airfoil design is not merely about achieving better numerical results in
a solver; it is a path toward cleaner and more reliable flight.

2. CFD-MDO practices

In the aviation industry, the lift-to-drag (LTD) ratio is a critical parameter that measures the lift an
airplane experience compares to the drag (Fig.2), which could indicate the aerodynamic efficiency.
It is straightforward to only focus on LTD. Real aircraft, however, require more. In real operation,
they need to carry payload, remain lightweight, and be practical to manufacture. Therefore, many
teams pair CFD with MDO to balance drag, structural requirements, and weight within a single loop
[6]. In these workflows, designers adjust diverse shape control parameters, such as thickness,
camber and twist, to run CFD and engineering analysis. This allows the designer to find the shape
that satisfies most constraints and avoid stress failure rather than exploiting a single metric [6].
When using laminar flow tools, a similar loop could include boundary layer suction (Hybrid
Laminar Flow Control, HLFC) and transition criteria, which enables the concurrent treatment of
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friction drag and shock wave losses, rather than in separate studies [7]. This design method connects
computer simulations’ results directly to aircraft physical outcomes, such as lower fuel use and
longer range, instead of only giving a nicer graph of lift and drag.

Figure 2. Wing Section Angle and Forces.

On the other hand, transonic cruise is particularly challenging. Shock waves can cause flow
separation and buffet; drag increases and margins shrink. In this case, multi-fidelity setups help by
running the search rapidly on simpler models first, and then using the more detailed models only for
the final designs. This maintains accuracy at where matters most while reducing costs [4]. In
practice, this "optimization in context" philosophy is simple: model the wing as it actually flies, and
then ensure the design remains outperforming in all flight conditions, not just at a single design
point [7,4]. This approach also aligns with the long history of induced drag reduction. Wingtip
devices proved effective in wind tunnels when structural penalties were managed, and modern MDO
extends this logic to full airframe trade-offs using superior tools and data [2,3,6]. The conclusion is
evident: CFD-MDO links geometric modifications to system-level benefits, which is precisely what
sustainable aviation requires.

3. RL strategies

Reinforcement Learning (RL) treats design as a learning process. Change the shape slightly, check
the result, then update the next action. A study framed airfoil design as a Markov Decision Process
and trained an agent to modify thickness and camber; it improved the lift-to-drag ratio and
rediscovered patterns from well-known airfoils, suggesting it learned useful aerodynamic rules
rather than just tracking a specific target [8]. Later studies employs deep reinforcement learning with
surrogate models to explore a wider range of designs, without very high computing costs, which still
show aerodynamic improvements in airfoil tests [8]. These approaches are particularly valuable
when marginal drag reductions accumulate over thousands of hours of service. RL is able to go
beyond the usual ways of defining shapes and avoid getting stuck in narrow solutions that limit
traditional methods. This makes it useful for finding innovative airfoil shapes that conventional
design rules might ignore (Fig.3, Fig.4) [8].
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Figure 4. Reinforcement Learning Optimization Framework.

Active flow control also plays an important role in RL strategies. Instead of altering the external
shape only once, the goal is to control the flow in real-time. A recent AIAA paper demonstrated a
reinforcement learning controller that uses surface blowing or suction to suppress laminar separation
on an airfoil; the method reduced separation and improved efficiency in the test setup, pointing
towards a path where controllers can learn strategies that classical open-loop schedules might miss
[9]. In addition, hardware can also be adaptive. Morphing wings adjust camber or twist in flight,
keeping the wing closer to its optimal point during climb, cruise, or turns. A recent survey reviews
the mechanisms, control strategies, and performance benefits across various operating conditions,
reporting lower off-design penalties compared to fixed shapes [10]. Simply put: if RL learns how the
shape or flow should change, and morphing provides the means to execute that change, you create a
feedback loop that maintains efficiency over a greater portion of the mission.

4. Operating conditions and robustness

A design only matters if it performs effectively in the air. Transonic buffet serves as a key test case.
Experiments show that porous trailing edges can reduce the unsteady shock motion that causes
buffet. This not only widens the safe cruise range and lowers pressure fluctuations, but also offers an
advantage that it is a small change instead of a complete wing redesign [5]. This is a practical
victory: a relatively modest add-on that delivers both improved efficiency—more time spent near
optimal cruise conditions—and enhanced stability in actual operating conditions [5]. When such
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retrofits are combined with the CFD-MDO and RL ideas mentioned above, the result is a toolkit that
improves the shape, the flow, and the operational envelope, rather than betting everything on a
single change.Search efficiency also improves by reducing the number of control parameters before
optimization. Teams often start with many geometric parameters, but only a few directions
significantly influence drag or lift. Methods that focus the search on these critical directions make
CFD-MDO or RL more efficient without significant loss of accuracy, which is particularly helpful
for small teams with limited computational resources [7,4]. The workflow then becomes: identify
the important influential parameters (directions), run the optimization on this reduced set, and verify
the final candidates with higher-fidelity checks [7,4]. This is how solver gains are transformed into
real flight performance gains. It is also how small teams can rapidly prototype ideas and retain those
that prove effective.

5. Conclusion

The message is straightforward. Examine the entire system, employ new search tools where
beneficial, and ensure improvements hold up under real flight conditions. CFD combined with MDO
ensures design reliability by balancing aerodynamics with structural and practical constraints
[6,7,4]. RL and morphing open pathways to shapes that can adapt and maintain efficiency across a
wider range of conditions [8,9,10]. Practical additions like porous trailing edges help the aircraft
operate closer to its optimum point, not just in simulation but in actual service [5]. If the goal is to
reduce fuel use and emissions, these steps all point in the same direction: wings and airfoils that are
better not only on paper but also in the sky.
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