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Abstract. The emergence of Large Language Model (LLM)-based agents marks a significant
step towards more capable Artificial Intelligence. However, the effectiveness of these agents
is fundamentally constrained by the static nature of their internal knowledge. Tool use has
become a critical paradigm to overcome these limitations, enabling agents to interact with
dynamic data, execute complex computations, and act upon the world. This paper provides a
comprehensive survey of the methods, challenges, and future directions in empowering
LLM-based agents with tool-use capabilities. Through a systematic literature review, we
synthesized the current state of the art, charting the evolution from foundational agent
architectures and core invocation mechanisms like function calling to advanced strategies
such as dynamic tool retrieval and autonomous tool creation. Our analysis revealed several
critical challenges that impede the deployment of robust agents, including knowledge
conflicts between internal priors and external evidence, significant performance degradation
in long-context scenarios, non-monotonic scaling behaviors in compound systems, and
novel security vulnerabilities. By mapping the current research landscape and identifying
these key obstacles, this survey proposes a research agenda to guide future efforts in
building more capable, secure, and reliable AI agents.
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1.  Introduction

The rapid advancement of Large Language Models (LLMs) is increasingly seen as a potential
catalyst for Artificial General Intelligence (AGI), providing a novel pathway for the development of
general-purpose AI agents [1]. However, standalone LLMs face inherent limitations, such as
possessing static knowledge, lacking expertise in specialized domains, and being unable to interact
with the real-time world. These constraints have spurred the emergence of LLM-based agents, which
aim to overcome these shortcomings [1-3]. Central to this endeavor is the concept of tool use, which
serves as the cornerstone for empowering these agents by extending their capabilities beyond their
native functionalities [1-3]. While significant progress has been made, the field lacks a systematic
overview that consolidates the diverse methods, advanced strategies, and critical challenges
associated with enabling agents to use tools effectively. This paper addresses this gap by providing a
comprehensive survey of tool use in LLM-based agents. We aim to answer several key questions:
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What are the foundational frameworks for tool-augmented agents? How do agents learn, invoke, and
optimize the use of tools? What advanced strategies, such as tool retrieval and creation, are being
developed to enhance autonomy? Finally, what are the critical challenges and frontier problems,
including knowledge conflicts, security risks, and performance in complex scenarios? To investigate
these questions, this paper conducts a systematic literature review, synthesizing cutting-edge
research to present a structured and holistic view of the field it is significant as it not only maps the
current landscape but also highlights unresolved challenges and forecasts future research
trajectories. By doing so, this study aims to provide valuable insights for researchers and
practitioners, offering a guide for developing more autonomous, robust, and capable AI agents.

2.  Foundational frameworks for tool-augmented agents

2.1.  The general architecture of LLM-based agents

A general framework for LLM-based agents typically comprises four core modules: Profiling
(defining the agent's role), Memory (managing information), Planning (decomposing tasks), and
Action (executing sub-goals) [2]. The Action Module is where tool use becomes central, serving as
the bridge between the agent's internal reasoning and the external world. It is the component
responsible for orchestrating tool calls to execute planned tasks.

2.2.  Classification and forms of tools

The tools available to an agent fall into two primary categories. The first, External Tools, consists of
explicit, callable resources. These include making API calls to external services (e.g., search
engines, computational tools), querying structured databases, and integrating other specialized
models like code interpreters [2]. The second category involves leveraging the LLM's Internal
Knowledge as implicit tools. This refers to the agent's ability to utilize the intrinsic capabilities of its
underlying model—such as high-level planning, conversational reasoning, and commonsense
understanding—to perform actions that do not require external calls [2].

2.3.  Mechanisms for learning tool use

An agent’s ability to use tools is not innate but learned through several mechanisms. Initially, an
agent learns to understand a tool's function and syntax through zero-shot or few-shot prompting,
where it is provided with descriptions or examples, much like reading a manual [1]. Subsequently, it
learns to master the tool through experience, either by imitating expert demonstrations or by refining
its strategies based on environmental and human feedback [1]. Ultimately, a truly capable agent
must adapt by generalizing its skills to novel tools and situations, a process that can be accelerated
through advanced methods like meta-tool learning and curriculum learning [1].

3.  Core mechanisms and optimizations for tool invocation

Once an agent understands what tools are and how to learn them, the next critical step is the
invocation—the process of planning, executing, and optimizing tool calls. This has evolved from
simple chained commands to sophisticated, efficient, and robust systems.
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3.1.  Planning and execution frameworks

The strategy for how an agent plans and executes tool calls significantly impacts its performance.
One foundational approach is to interleave reasoning and acting, as exemplified by the ReAct
framework. In this model, the agent generates a reasoning trace to analyze the problem, decides on
an action (a tool call), executes it, observes the result, and repeats this cycle until the task is
complete. This tight loop allows for dynamic adjustments but can increase latency due to multiple
sequential model interactions [4]. Variants like ChatCoT adapt this interactive process for multi-turn
conversational settings [4]. In contrast, other frameworks decouple planning from execution. The
ReWOO model, for instance, employs a Planner-Worker-Solver architecture. The Planner first
generates a complete, static plan of all required tool calls. Then, multiple Workers execute these
calls, often concurrently. Finally, a Solver integrates all the evidence gathered by the Workers to
produce the final answer [5]. This approach can improve efficiency and reduce the number of
required LLM calls. More advanced systems like LangGraph utilize graph-based structures to define
agent workflows, enabling more flexible and complex cyclical processes that go beyond simple
linear chains [4].

3.2.  Function calling: the De facto paradigm

Modern tool invocation is predominantly implemented through Function Calling, where the LLM
outputs a structured representation (typically a JSON object) specifying the tool's name and the
arguments for its invocation. This paradigm has several implementation pathways and optimization
strategies.

3.2.1.  Implementation paths

The most direct path is through prompt engineering, where in-context examples and detailed
instructions guide a general-purpose LLM to produce the correct structured output without any
model modification [6]. While flexible, this approach can lack robustness. A more reliable method is
fine-tuning, where the model is trained on a dataset of domain-specific tool-calling examples. This
injects specialized knowledge directly into the model, significantly improving accuracy and
reliability [7, 8]. A third path involves using modular frameworks like eidos, which externalize the
process by allowing declarative registration and validation of tools. This decouples the tool
ecosystem from the LLM, enhancing modularity and security [9].

3.2.2.  Enhancing efficiency and performance

A major bottleneck in tool use is latency. Asynchronous calling, as proposed by AsyncLM, addresses
this by breaking the synchronous "call-wait-respond" loop. It allows the LLM to continue generating
while a tool executes in the background, with the result inserted later via an interrupt, boosting
concurrency and speed [10]. For tasks requiring multiple sequential steps, frameworks like the
Simple Action Model aim to reduce the number of LLM interactions by allowing a single model
output to define a complete chain of actions to be executed sequentially [11]. Furthermore,
techniques like distillation have given rise to dual-model architectures where a small, fast "router"
model handles simple, frequent requests, delegating more complex tasks to a larger model, thereby
optimizing overall system latency [12].
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3.2.3.  Improving robustness and accuracy

Ensuring the correctness of tool calls is paramount. This can be improved through carefully
designed prompt and data strategies, such as optimizing prompt templates, fusing tool-use data with
general instruction-following data, and introducing special "decision tokens" that force the model to
explicitly decide whether to use a tool [13]. For greater reliability, closed-loop verification and
rectification offer a powerful solution. The ThorV2 architecture, for example, uses an Agent-
Validator model where a programmatic validator checks the agent's proposed tool call. If an error is
detected, feedback is provided to the agent, which then attempts to correct its call, creating an
iterative self-correction loop that significantly boosts accuracy [14].

3.3.  Data-driven capability acquisition via data synthesis

The effectiveness of fine-tuned tool-using agents is heavily dependent on the quality and diversity of
their training data, which is often a major bottleneck. To overcome this, automated data generation
pipelines like ToolACE have been developed [15, 16]. Such frameworks systematically create high-
quality, large-scale datasets through a multi-stage process. First, a diverse set of tools is generated
via API self-evolution (TSS) to ensure broad coverage [15]. Next, a self-guided dialogue generation
(SDG) process, often using a multi-agent setup, creates realistic tool-use scenarios. Crucially, this
stage often includes dynamic complexity adjustment, tailoring the difficulty of generated tasks to the
target model's current abilities [15, 16]. Finally, a dual-layer verification (DLV) step uses both rule-
based checkers and powerful LLMs to validate the syntactic and semantic correctness of the
generated data, ensuring its quality and executability [15, 16].

4.  Advanced tool management: from retrieval to creation

As agents become more sophisticated, their interaction with tools evolves beyond simply using a
predefined set. Advanced tool management encompasses the ability to navigate vast tool libraries
and even to create novel tools, marking a significant leap towards greater autonomy. This section
explores these advanced capabilities, focusing on tool retrieval in open-world settings and the
paradigm of automated tool creation and evolution.

4.1.  Tool retrieval and selection in the open world

In realistic scenarios, an agent may have access to hundreds or thousands of potential tools, making
the decision of "whether to use a tool" and "which tool to use" a critical challenge [17]. This "open-
world" problem requires mechanisms for dynamic tool retrieval rather than relying on a fixed set of
in-context tools. The Meta-Tool framework addresses this by proposing a "hypothesize-retrieve-
invoke" paradigm. Instead of having all tools available in its context, the agent first hypothesizes the
kind of functionality it needs, then retrieves the most relevant tool from a large external library, and
finally, invokes it [18]. This approach is highly scalable and mirrors how humans find and use new
software or APIs. To systematically evaluate these capabilities, dedicated benchmarks like the Meta-
Tool Benchmark have been developed. They are designed to assess an agent's "tool use awareness"
(the ability to correctly decide if a tool is necessary) and its "tool selection" accuracy from a large
pool of options, providing a standardized way to measure progress in this crucial area [17].
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4.2.  Automated tool creation and evolution

The pinnacle of tool management is the ability for an agent to create its own tools, transitioning
from a "tool user" to a "tool maker." This capability allows an agent to generate bespoke, reusable
solutions for novel problems, embodying a higher level of autonomous problem-solving. Several
frameworks have been proposed to realize this vision. LATM (Large Language Models as Tool
Makers) introduces a division of labor: a powerful "Tool Maker" model (e.g., GPT-4) generates a
general-purpose tool from a few examples, while a more efficient "Tool User" model (e.g., GPT-3.5)
repeatedly uses this tool. This architecture achieves a remarkable balance between high performance
and significantly reduced computational cost [19]. The CREATOR framework further refines this by
decoupling abstract reasoning (creating the tool) from concrete reasoning (deciding how to use it). It
also introduces a crucial execution-rectification loop, enabling the agent to test its created tools and
self-correct based on execution feedback [20]. CRAFT likewise follows a disciplined pipeline—
generate, abstract, verify, deduplicate—to yield a lean, non-redundant tool library that is accessed
through a multi-faceted retrieval engine [21]. Beyond one-time creation, the TROVE framework
explores the continuous evolution of a toolset. It operates on a dynamic "Use-Grow-Trim" loop: the
agent deploys existing tools, spawning new ones on demand, and periodically prunes those that are
inefficient or seldom used. This enables the agent's toolbox to adapt and optimize itself over time,
ensuring its continued relevance and efficiency [22, 23].

5.  Key challenges and frontier problems

Despite rapid advancements, deploying robust and reliable tool-augmented agents in real-world
scenarios is fraught with challenges. These range from fundamental conflicts in knowledge sources
to performance degradation in complex situations and emerging security vulnerabilities. This section
details these key challenges and frontier problems that the field currently faces.

5.1.  Knowledge conflict: internal prior vs. external evidence

A fundamental challenge arises when the information retrieved from an external tool conflict with
the LLM's internal, parametric knowledge. Research using benchmarks like ClashEval reveals that
models exhibit a strong context bias; they are more than 60% likely to be misled by incorrect
external evidence, even when their internal knowledge is correct [24]. This preference for external
context makes agents vulnerable to misinformation from unreliable tools or poisoned data sources.
The problem is exacerbated when agents use their own generated context, as they show an even
stronger preference for self-generated information over retrieved evidence, a phenomenon described
as being "Blinded by Generated Contexts" [25]. This can create a dangerous feedback loop, where
an initial error is reinforced and amplified.

5.2.  Robustness in complex and long-context scenarios

The effectiveness of tool use often degrades as task complexity and context length increase. The
ComplexFuncBench benchmark defines complexity through characteristics like the need for multi-
step tool calls, adherence to strict user constraints, and the inference of implicit parameters [26].
Furthermore, research with the LongFuncEval benchmark has identified three critical long-context
challenges that severely impact performance: navigating large tool catalogs with hundreds of
potential functions, parsing long tool responses such as verbose JSON outputs from APIs, and
maintaining context across long multi-turn conversations [27]. A universal finding is that nearly all
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models, regardless of their stated context window size, suffer significant performance degradation—
in some cases by as much as 85-91%—when faced with these long-context challenges. They also
exhibit strong positional biases, such as failing to find information in the middle of the context ("lost
in the middle") or overly favoring the most recent information [27].

5.3.  The scaling paradox of compound systems

It is a common misconception that in compound AI systems, such as those that aggregate results
from multiple tool calls, increasing the number of calls invariably leads to better performance.
Recent studies uncover a non-monotonic scaling paradox: accuracy traces a U- or inverted-U curve
as more LLM calls are issued [28]. For "easy" queries, more calls can help correct minor errors
through mechanisms like majority voting. However, for "difficult" queries, additional calls are more
likely to introduce further errors or reinforce incorrect initial assumptions, leading to a decline in
performance. This finding implies that blindly increasing computational budget is not an effective
strategy. Instead, future systems must develop adaptive strategies that dynamically adjust the
number of tool calls based on the perceived difficulty of the query [28].

5.4.  Security risks: new attack surfaces from function calling

The introduction of function-calling capabilities creates new, previously unexamined attack surfaces.
A significant threat is the "Jailbreak Function Attack," where an adversary crafts a seemingly benign
function call to induce the LLM to generate harmful or restricted content within the function's
parameters [29]. This attack is highly effective, with success rates exceeding 90% against major
LLMs. The vulnerability stems from several root causes: the function-calling modality often lacks
the same rigorous safety alignment applied to standard chat interactions, system parameters can be
used to force the model to use a specific tool, and there is a general lack of content filtering on the
data flowing through the tool-calling interface [29]. This highlights an urgent need to rethink
security and alignment for the entire tool-use pipeline.

5.5.  Challenges in specific domains

It is a common misconception that in compound AI systems, such as those that Beyond these general
issues, significant challenges arise when applying tool use to specific domains. When querying
databases, models struggle to differentiate between similar operations like text filters and semantic
search, and smaller models perform poorly on complex queries with multiple constraints [30]. In
graph reasoning, LLMs are prone to hallucination and require multi-turn, closed-loop interactions
with graph computation libraries to achieve accuracy, often needing self-correction mechanisms to
recover from errors [31]. For small language model (SLM) deployment on edge devices, while fine-
tuning can significantly boost tool-calling performance, it comes at the cost of high latency, creating
a trade-off between capability and responsiveness [8]. Conversely, in areas like dialogue state
tracking, reframing the problem as a function-calling task has proven highly effective, enabling
zero-shot performance where previous methods required extensive training data [32].
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6.  Conclusion and future directions

6.1.  Conclusion

The ability to use tools represents a pivotal and transformative leap in the evolution of Large
Language Models. It is the critical catalyst that elevates them from being passive generators of text
to becoming active, goal-oriented agents capable of interacting with, reasoning about, and acting
upon the world. This paper has provided a systematic overview of this rapidly advancing field,
charting a course from foundational agent architectures to the sophisticated mechanisms of tool
invocation, management, and autonomous creation. We have seen a clear trajectory from simple tool
users to sophisticated tool makers, reflecting a steady march towards greater autonomy. However,
our review also illuminates a set of profound challenges that mark the current research frontier,
including fundamental knowledge conflicts, performance degradation in complex scenarios,
counter-intuitive scaling paradoxes, and urgent security vulnerabilities.

6.2.  An agenda for future research

Addressing these formidable challenges requires a multi-faceted research agenda that points toward
several key future directions. First, the development of tool ecosystem standardization and
interoperability is essential to move beyond the current fragmented landscape. Second, agents must
achieve stronger autonomy through self-correction and lifelong learning, enabling them to diagnose
failures and continuously adapt their strategies [3, 6, 30]. Third, we need more advanced tool
orchestration and workflow optimization to handle complex, multi-step tasks efficiently [3, 5, 10]. A
particularly promising path is the creation of pre-trained tool-augmented foundation models, which
would make tool use a more native and reliable faculty [3]. Finally, and most critically, security and
reliability must be addressed by design, incorporating robust validation layers and specialized safety
alignment to fortify agents against manipulation [9, 14, 29]. Successfully navigating these research
avenues will be the key to unlocking the full, transformative potential of LLM-based agents. Doing
so will move them from promising prototypes in controlled environments to reliable, trustworthy,
and indispensable partners in science, industry, and our daily digital lives, ultimately paving the way
for the next generation of general-purpose artificial intelligence.
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