Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

In-depth Analysis of the Performance and Applications of

Classical and Deep Learning Models under the UCI HAR
Dataset

Yuqin Yang', Xuxin Wang**

'Eastside Preparatory School, Kirkland, USA
’Hong Kong Polytechnic University, Hong Kong, China
*Corresponding Author. Email: 24110796d@connect.polyu.hk

Human Activity Recognition (HAR) is vital in pattern recognition and Al, with
applications in smart health and security, but faces challenges like diverse activities and
sensor noise, making model selection critical. In this work, we compare classical and deep
learning models for HAR using the UCI HAR dataset—including inertial sensor data from
30 volunteers performing six activities. Classical models (linear/RBF SVM, Random Forest,
KNN, AdaBoost, Stacking) and deep learning models (CNN, RNN-LSTM) are evaluated on
accuracy, macro-F1, and resource metrics. A leakage-free workflow is adopted:
GridSearchCV (3-fold cross-validation) tunes hyperparameters, models are retrained on the
full training set, and tested independently. Results show linear SVM achieves the best
single-model accuracy (96.13%), while Stacking (combining linear SVM, KNN, RF)
performs best overall (96.61%). CNN (92.60% accuracy) slightly outperforms RNN-LSTM
(90.91%), and KNN uses the least memory. This work provides key insights for HAR model
selection (linear SVM as baseline, Stacking for accuracy) and guides future work to reduce
false positives, advancing HAR technology.

human activity recognition (HAR), UCI HAR dataset, classical and deep
learning models, model performance comparison

Human Activity Recognition (HAR) is an important research direction in the field of pattern
recognition and artificial intelligence, aiming at automatically identifying the individual's ongoing
activities by analyzing the data from various sensors. Now, with the rapid development of sensor
technology and artificial intelligence, HAR has shown great application potential in many fields.
HAR technology can monitor users' daily activities in real time in the field of intelligent health
monitoring such as walking, sleeping, and provide users with personalized health advice to help
doctors prevent and diagnose diseases. In the smart home environment, the system can automatically
adjust the household appliances according to the user's activity state, realize the intelligent control of

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

53

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

home, and improve the convenience and comfort of life. In the field of intelligent security, HAR can
identify abnormal activities, give an alarm in time, and ensure public safety. In addition, HAR plays
key roles in sports training,human-computer interaction, and other fields, which can provide athletes
with accurate training feedback and realize natural and smooth human-computer interaction.

However, achieving an efficient and accurate HAR faces many challenges. Human activities are
very diverse and complex. Besides, different individuals have different activities, and even the same
activity may show different characteristics in different scenarios. In addition, sensor data often
contains noise and interference, which may affect the accuracy and suitability of the results. How to
extract effective features from these data and choose appropriate models for accurate classification
is a key issue in HAR research.

In the research of human activity recognition, the choice of model directly affects the accuracy and
efficiency of recognition. Different models have their own characteristics and advantages, and are
suitable for different scenarios and data types. For example, a support vector machine (SVM)
performs well in dealing with small samples and nonlinear problems, while a Random Forest has
good robustness and generalization ability. A convolutional neural network (CNN) can extract
effective features automatically when processing time series data and images. Recurrent neural
network (RNN) and its variants, such as long-term and short-term memory network (LSTM) and
gated cyclic unit (GRU), are good at dealing with long-term dependencies in sequence data.

A comparative study of different models can provide a deeper understanding of the performance
and scope of application of each model, and provide a basis for choosing the best solution in
practical application. Through comparative analysis, we can find the differences between different
models in feature extraction, classification ability, and calculation efficiency, so as to choose the
most suitable model according to specific needs and data characteristics. At the same time, the
comparative study of models can also provide a direction for the improvement and optimization of
models and promote the continuous development of human activity recognition technology. In
practical application, combining the advantages of various models to build an integrated model can
further improve the accuracy and stability of recognition. Therefore, model comparison plays a vital
role in the field of human activity recognition.

As a classic benchmark data set in the field of human activity recognition, UCI HAR dataset has
received extensive attention and research. The data set was generated by 30 volunteers who
collected inertial sensor data through smart phones worn around their waist when they were doing
six different activities including walking,sitting, standing, going up stairs, going down stairs and
lying down. The dataset contains rich features in the time and frequency domains., which could
provide a good research foundation for researchers.

Many scholars have conducted research based on UCI HAR dataset, aiming at improving the
accuracy and efficiency of human activity recognition. In the article "Deep, Convective, and
Recurrent Models for Human Activity Recognition Using Wearables" published in 2016, Hammerla
conducted a comprehensive comparative study on deep learning models such as CNN, LSTM,
CNN+LSTM and traditional classifiers on UCI HAR and other sensor data sets [1]. The results show

54

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

that the deep learning model is generally superior to the traditional model in performance, among
which 1D-CNN and LSTM are excellent in processing time series data.

In 2020, MDPI published the article "Comparing Human Activity Recognition Models Based on
Sensor Data", which evaluated classical models such as k-NN, Random Forest, SVM, and deep
learning models such as CNN and RNN on the UCI HAR dataset [2]. This study not only pays
attention to the accuracy of the model, but also analyzes the complexity of the model including
memory, running time and number of parameters, which provides a more comprehensive reference
for the selection and application of the model.

Gaikwad and his team published "Benchmarking Classic, Deep, and Generative Models for
Human Activity Recognition" in 2024 and compared the performance of decision tree, random
forest, CNN, DBN, DBM and other models on several data sets such as UCI HAR,
OPPORTUNITY, PAMAP?2 [3]. The contribution of this research lies in the in-depth comparative
analysis of generative model and discriminant model, which provides a new perspective for the
model research in the field of human activity recognition.

In the research of human activity recognition, classical models such as decision tree, random forest
and support vector machine (SVM) are widely used. A decision tree model makes decisions in a tree
structure, with each internal node representing an attribute judgment, branches representing the
output of judgment, and leaf nodes representing the final decision result. Its advantages are simple
and intuitive, easy to understand and explain, but it is prone to over-fitting problems. When dealing
with UCI HAR data sets, decision trees can be classified according to the characteristics in the data
sets, but their generalization ability may be limited for complex human activity data.

Random forest is an ensemble learning algorithm that improves model performance by
constructing multiple decision trees and aggregating their prediction results. It has good robustness
and generalization ability, and can effectively deal with high-dimensional data and noisy data. On
UCI HAR data set, random forest can improve the accuracy of activity identification through a
voting mechanism for multiple decision trees. However, the calculation complexity of random forest
is high and the training time is long.

Support Vector Machine (SVM) is a classification model based on statistical learning theory. It
classifies data by finding an optimal hyperplane and performs well in dealing with small samples
and nonlinear problems. SVM is mainly divided into linear SVM and nonlinear SVM. Linear SVM
is suitable for the case that the data is linearly separable in the original feature space, and its decision
boundary is a linear hyperplane. Nonlinear SVM is used to deal with the nonlinear separability of
data in the original feature space. By introducing a kernel function, nonlinear SVM can map data to
a high-dimensional feature space, so as to find a linear hyperplane in high-dimensional space for
classification, and it usually uses kernel functions, including linear kernel, polynomial kernel and
Gaussian kernel. On the UCI HAR data set, SVM can effectively process high-dimensional data,
and the requirement for sample size is low, but it is sensitive to parameter selection and needs fine-
tuning.

With the development of deep learning, deep learning models such as convolutional neural network
(CNN), recurrent neural network (RNN) and its variant LSTM have been widely used in the field of
human activity recognition. Through a convolution layer, a pooling layer and a fully connected

55

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

layer, CNN can automatically extract the features of data, and has great ability in processing images
and time series data. On the UCI HAR data set, CNN can extract the key features of activities
through the convolution operation of sensor data, thus realizing the classification of different
activities [4]. RNN and its variants, LSTM and GRU, are good at dealing with long-term
dependencies in sequence data [5]. By introducing a gating mechanism, LSTM can solve the
problems of gradient disappearance and gradient explosion in RNN with high efficiency, and better
capture the long-term dependence information in time series [6]. In the research of UCI HAR data
set, LSTM can model the time series of sensor data, and learn the characteristic changes of different
activities in the time dimension, which could improve the accuracy of activity recognition.

Although the deep learning model has achieved good performance on UCI HAR data sets, it also
faces some challenges. Deep learning model usually needs a lot of training data and computing
resources, and the training process is complex, which is prone to over-fitting problems. In addition,
the interpretability of the deep learning model is poor, and it is difficult to understand the decision-
making process of the model, which may be limited in some application scenarios with high
explanatory requirements.

The UCI-HAR dataset, named "Human Activity Recognition Using Smart Phones Dataset", is a very
representative public dataset in the field of human activity recognition. It was carefully collected and
published by researchers from the University of Valencia, Spain, and was mainly used to study and
evaluate human activity recognition technology.

During the data collection process, 30 volunteers carried waist smart phones with built-in inertial
sensors during their daily activities. These sensors collect linear acceleration and angular velocity
data at a constant rate of 50Hz, covering information in three axes. The activities carried out by
volunteers include six basic activities: walking, sitting, standing, going up stairs, going down stairs
and lying down. In this way, a wealth of sensor data is collected, which provides a solid data
foundation for the follow-up research.

Each sample in the dataset contains abundant characteristic information, and these characteristic
variables are mainly divided into two categories: time domain signal characteristics and frequency
domain signal characteristics. Time domain features include statistical information such as mean,
standard deviation, skewness and kurtosis of time series, which can reflect the changing trend and
characteristics of data in the time dimension. Frequency domain features are frequency components
extracted from time domain signals by the Fourier transform, which are used to analyze the
frequency characteristics of signals. In addition, the data set contains features based on wavelet
transform, which provide more complex and in-depth decomposition information for the signal and
help to understand and identify the patterns of daily activities more comprehensively.

In order to understand the distribution of activities in the data set more intuitively, the number of
activity samples in the training set and the test set is counted, and the results are shown in the
following Table 1:

56

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

Table 1. Activity results

Activity category Number of training set samples Number of test set samples
walk 2947 1092
climb the stairs 1626 672
go downstairs 1374 576
be seated 1952 804
stand 1937 804
lie 1473 528

As can be seen from the table 1, the number of samples in each activity category is relatively
balanced, which enables the model to fully learn the characteristics of different activities in the
training process and avoid model deviation caused by unbalanced samples. This balanced sample
distribution is helpful to improve the generalization ability and accuracy of the model and make it
better adapt to various practical application scenarios.

In the data loading stage, we use pandas library in Python to read data. Pandas library provides
powerful data processing and analysis functions, which can efficiently process data files of various
formats. Because the feature files and label files in the UCI-HAR dataset use spaces as separators
and have no headers, when using the read csv () function, it is necessary to specially set the
parameter sep="\s+' to indicate space separation, header=None to indicate that there is no header in
the file, and engine='python' to deal with possible complicated separator problems. Through these
settings, the data can be accurately read into the program to prepare for the subsequent processing.

In the UCI-HAR dataset, the participant number is left out in the training data. The standard
scaler is fit on the training features, scaling to unit variance, and used on the training and test
features.

We used the time series version of the UCI-HAR dataset, called inertial signals for our deep
learning models. It represents the same data collected from people doing one of 6 activities,
including walking, sitting, standing, while their linear acceleration and angular velocity around 3
axis were captured, at a rate of 50 samples per sec. For every window of time being 2.56 seconds
where their activity was labeled, there were 128 sensor readings (50*2.56) from each of the 9
Sensors.

After reading the original data into the array, it needs to be transformed into a 3D tensor suitable
for model input. Take the convolutional neural network (CNN) as an example, its input data usually
needs to have a specific dimension order, such as (batch_size, time steps, features). Therefore, we
need to transform the dimension of the read data. Firstly, the data are arranged according to time
steps and features to ensure that the data of each time step can be correctly processed by the model.
Then, a new dimension is added to the first dimension of the data to represent the batch size. In this
way, the original data is converted into a 3D tensor suitable for CNN input. For preprocessing, we
read in separate files for each sensor, then stacked those nine individual arrays along a new channel
dimension, to get a (n_windows 7000 % 128 X% 9) that can be fed directly into our CNN or LSTM.

For active tags, we adopt the method of One-Hot Encoding. One-hot encoding is a technique to
convert classification variables into binary vectors, which can represent each category as a unique
binary vector, with only one element in the vector being 1 and the rest being 0. In this dataset, there

57

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

are six activity categories, so each activity tag will be converted into a binary vector of length 6. For
example, the tag of walking activity may be coded as [1, 0, 0, 0, 0, 0], the tag of climbing stairs
activity may be coded as [0, 1, 0, 0, 0], and so on. This coding method can prevent the model from
treating categories as ordered numbers and ensure that each category is treated independently, thus
improving the classification accuracy of the model.

The purpose of single heat coding is to transform the classification information into a numerical
form that the model can understand and process, while maintaining the independence and
differences between categories. Through single-hot coding, the model can better learn the
characteristics of different activity categories and avoid model errors caused by improper coding
methods of categories. In addition, the single heat coding is also convenient for the model to
calculate the loss function and carry out back propagation in the training process, which is helpful to
improve the training efficiency and performance of the model.

The hyperparameter is tuned by GridSearchCV to find the optimal combination of model
parameters. In the process of hyperparameter tuning, the selection of the C parameter and kernel
function type is emphasized. To ensure the accuracy and reliability of hyperparameter tuning, a 50%
cross-validation approach is adopted. When the KNN algorithm experiment is carried out on UCI
HAR data set, the range of k value is set to [3, 5, 7, 9, 11], considering the important influence of k
value on the performance of the algorithm. In the random forest experiment, the range of the number
of trees is [50, 100, 150, 200].

A leakage-free workflow was followed. The UCI-HAR dataset was split once into a training set and
a test set. For each classical model, GridSearchCV with 3-fold stratified cross-validation was run,
and the hyperparameter combination maximizing macro-F1 (a balanced blend of precision and recall
across classes) was selected. After tuning, the model was retrained with the chosen hyperparameters
on the entire training set and evaluated once on the test set to obtain unbiased Accuracy, Precision,
Recall, and F1. This procedure was applied to SVM with an RBF kernel, SVM with a linear kernel,
Random Forest, and KNN.

The difference between linear SVM and SVM RBF is that linear SVM learns a single separating
hyperplane—a weight vector for each feature—so it excels when classes are nearly linearly
separable after standardization. The RBF SVM instead represents the decision boundary through
support vectors and a Gaussian kernel; it can carve highly non-linear regions but is sensitive to the
global y/C choice and may over-smooth or overfit if not tuned precisely.

For the SVM with an RBF kernel, the parameter search was conducted over C = (1, 32, 64) and vy
= (0.01, 0.03). For the linear SVM, the grid included C = (1, 10, 31). The random forest classifier
was tuned with n_estimators = (50, 65, 81), using “entropy” as the splitting criterion, maximum
depth set to (None, 10, 729), maximum features set to “log2,” and minimum samples per split fixed
at 4. The k-nearest neighbors model was optimized with n neighbors = (5, 9), distance-based
weighting, brute-force search, leaf size set to (30, 3), and Minkowski distance parameter p = (1, 2).

In the CNN, the convolutional layer takes 9 timesteps at a time within each window, multiplies
each sensor reading by a set of small weights, and produces values indicating whether a certain
pattern or motion motif appeared within the 9 timesteps. This is repeated with 128 filters, each
responsible for detecting different short patterns. A dropout layer randomly zeroes 20% of the

58

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

120x128 activations to prevent reliance on any single filter. The max pooling layer keeps only the
maximum out of every 2 adjacent timesteps, focusing on strong signals and reducing computation.
Flattening converts the resulting 26x128 = 3,328 feature grid into a vector. The final Dense(6,
softmax) outputs class probabilities. In short, the CNN detects whether short, shift-invariant
temporal patterns appear anywhere within the 128-step window.

Table 2. Architectural details of CNN and RNN

Layer (type) Output Shape Param #
convld 146 (ConvlD) (None, 120, 128) 10,496
dropout 150 (Dropout) (None, 120, 128) 0

max_poolingld 146 (MaxPooling1D) (None, 60, 128) 0
convld 147 (ConvlD) (None, 52, 128) 147,584
dropout 151 (Dropout) (None, 52, 128) 0
max_poolingld 147 (MaxPooling1D) (None, 26, 128) 0
flatten 73 (Flatten) (None, 3328) 0
dense 149 (Dense) (None, 128) 426,112
dense 150 (Dense) (None, 6) 774
Total params - 1,169,534 (4.46 MB)
Trainable params - 584,966 (2.23 MB)
Non-trainable params - 0 (0.00 B)
Optimizer params - 584,968 (2.23 MB)
Layer (type) Output Shape Param #
Istm_4 (LSTM) (None, 128, 64) 18,944
dropout 152 (Dropout) (None, 128, 64) 0
Istm 5 (LSTM) (None, 128) 98,816
dropout_153 (Dropout) (None, 128) 0
dense 151 (Dense) (None, 128) 16,512
dense 152 (Dense) (None, 6) 774

Total params
Trainable params
Non-trainable params

Optimizer params

270,094 (1.03 MB)
135,046 (527.52 KB)
0 (0.00 B)
135,048 (527.54 KB)

Table 2 shows the architectural details of two neural network models. The RNN with LSTM
reads one timestep at a time. Each step combines the current input with the previous state and
updates an internal cell state using three gates: forget (how much past information to keep), input
(how much of the new signal to write), and output (how much of the updated memory to expose).
This allows the LSTM to remember slow trends (e.g., long motions) while ignoring fleeting noise.
With return_sequences=True, it outputs a 64-length vector for every timestep, giving the next layer
the full evolution of features across 128 steps. The second LSTM layer processes the resulting
128%64 dataset. In short, the LSTM pipeline models dependencies over time: it keeps what matters,
forgets what does not, and outputs a compact narrative of the motion, which is especially helpful
when class differences lie in temporal changes rather than isolated short patterns.

59

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

Grid search with 3-fold cross-validation was also used to find hyperparameters for the AdaBoost
model with a depth-1 decision tree as the base estimator. The best configuration was selected based
on macro-F1, then retrained on the full training set and evaluated on the test set.

Stacking was applied to combine base models’ strengths. SVM linear, KNN, and RF were chosen
as base models for their strong performance. During training, the set was split into 3 folds. For each
fold, each base model was trained on the other 2 folds and predicted the held-out fold, ensuring each
training point received 3 base-model predictions without leakage. The resulting 3 class-probability
vectors per data point formed a meta-feature dataset (7352 data points X 3 models x 6 classes).
Logistic regression was trained on these meta-features to learn weights for combining the models’
outputs. During prediction, each refit base model produced probabilities for X test, which were then
combined using logistic regression via arg max softmax(Wz + b), yielding final probabilities for
each class and selecting the most probable label.

3.3.2. Results

Table 3. Model performance comparison

Model Accurac Precisio Recal Macro- Training Prediction Memo Model size
n 1 F1 duration duration Yy (params)
SVM (RBF) 0.8948 0.9042 0'%94 08943 ~10.95s ~896s 18'&}%‘“’ 2608709
SVM Linear) 09613 09634 220 00612 ~126s ~049s 3.13 (disk, 8430
3 MiB)
Random 0.929 1.90 (disk,
ool 09332 09353 7 09304 ~8.44s ~0.04s MiB) 63427
KNN 09016 09092 %395 08977 ~0.04s ~18.16's 28.31 (disk, 0
8 MiB)
0.927
CNN 09260 09268 "7 09264 ~17.80 ~0.946 s ~2.34 MB 584,966
0911 .
RNN 09091 09095 . 09100 ~22min23s ~20.58s ~0.88 MB 219,526
Adaboost 0.9406 09423 %93% 09396 ~10min23 s ~0.67s 0.64 (disk, 5128
4 MiB)
Stacking ~ 0.9661 0.9674 0'9864 09656 ~35.17s ~161s 45'11\;1(3‘;‘51" 106376

The table 3 compares accuracy, macro-precision, macro-recall, macro-F1, training and prediction
time, and memory footprint. Stacking has the best performance across metrics and KNN uses the
least memory.

For the classical SVMs, the linear kernel fit best with C = 1, yielding the highest macro-F1
overall.

The best parameters for Adaboost were 100 estimators, 0.5 learning rate, max depth of 4.

60

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

3.3.3. Discussion

KNN — counts

LAYING .528 6

SVM_RBF — counts SVM_Linear — counts RandomForest — counts
LAYING 0o o0 3 LAYING d) LAYING C
SITTING 80 21 SITTING E 0 1 SITTING 8 E 61 SITTING 88 E 97
o STANDING -JSEEE] o STANDING 23
. wiaLkinG S 1) . WALKING C m

WALKING_DOWNSTAIRS el o 2 = 43 WALKING_DOWNSTAIRS KU 44

WALKING_UPSTAIRS RS m WALKING_UPSTAIRS R] m

LAY NEET TE AR MV EIO W S TRGHERIR 5 LAY NEST TENGRWNRCE MOV EIC W S TRGHAR IR S LAY INGHT TEN GMBRTMMRCIOMMN SRG AR S LAY INGET THUGMNMEMIM GO STGRAIR S

STANDING SIS STANDING

True

WALKING - WALKING -

WALKING_DOWNSTAIRS S WALKING_DOWNSTAIRS

WALKING_UPSTAIRS WALKING_UPSTAIRS -

Figure 1. Performance of SVM RBF, SVM Linear, Random Forest, and KNN

Figure 1 shows performance of four machine learning models: SVM RBF, SVM Linear,
RandomForest, and KNN. For SVM RBF that did the worst, the recall for the walking, 0.83, is bad
because it mistakes it for walking downstairs and the recall for walking upstairs is 0.89 because it
also predicts walking downstairs. The precision for walking downstairs is the worst, at a
0.65. Walking, Upstairs, and Downstairs all have step-like patterns and similar magnitudes. RBF
likely underperformed linear here because it overfitted local quirks.

Random forest and KNN make pretty much the same errors, mistaking sitting for standing and
mistaking walking and walking upstairs for walking downstairs.

CNN performed better than RNN. The slightly better performance might be because CNN, which
detects whether there are certain repetitive traits in motion, works better for classifying activities
like walking than RNN that classifies based on how motion changes over the whole period. The
LSTM emphasizes longer temporal dependencies and ordering; with a short window and the chosen
hyperparameters, it likely needs more capacity or more epochs to close the gap. Indeed, our grid
limited max epochs (the best RNN used the cap), suggesting the RNN may not have fully converged
under our search budget, whereas the CNN’s optimization is easier and more parallel.

Per-model aggregate |weights| (L1; rough influence size):
model knn rf svm_lin
target=LAYING 3.781 5.054 8.180
target=SITTING 5.242 6.662 6.245

target=STANDING 4.660 6.859 6.964
target=WALKING 5.531 4.907 6.063
target=WALKING_DOWNSTAIRS 4.364 5.696 6.144
target=WALKING UPSTAIRS 6.199 2.692 5.309

Figure 2. Per - model aggregate weights

Stacking outperformed SVM linear. From the weights given to different models for different
classes, it can be inferred that KNN is better than SVM linear in walking upstairs, random forest is
slightly better than SVM linear for sitting, so stacking slightly improves upon linear SVM’s
performance because it takes advantage of other models to predict classes where they outperform
SVM linear. The confusion matrices in figure 3 back this up, showing how the biggest improvement
from linear SVM to stacking is the recall for sitting, which is 0.88 for linear SVM and 0.92 for
stacking. A downside is that it is more memory consuming compared to the classic models because
it needs to manage 3 models and logistic regression. Given the accuracy gains, this cost is justified
for applications that prioritize predictive quality; where memory or latency is tight, the linear SVM
remains an exceptionally strong and compact baseline.

61

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

Stacking — Confusion Matrix (counts)

LAYING JEEX)

SITTING A

STANDING- 0O

WALKING 1 0

True label

WALKING_DOWNSTAIRS | O

WALKING_UPSTAIRS { O

T T T T T
LAY INGTT | ST NEREE H BED W BSTREFELR S
Predicted label

Figure 3. Confusion matrix for a stacking model

As shown in figure 4, adaboost with decision trees did comparatively well, outperforming
random forest. The most important features were Gravity acceleration mean on X/Y/Z, which tells
you the phone’s orientation relative to gravity. It’s useful for separating postures and body

acceleration along axes, which helps separate movements. This is evidence that boosted trees
capture strong, one-feature cues well.

AdaBoost feature importance

fBodyAcc-mean()-X
tGravityAcc-min()-xX
tBodyAcc-correlationd)-X, Y
angle(X. gravityMean)
tGravityAcc-min()y
tGravityAcc-energy()-y
tGravityAcc-max()y
fBodyAcc-bandsEnergy()-1,8
fBodyacclerk-bandsEnergy()-1.24
tBodyAcc)erk-max()-X
fBodyaAcc)erk-bandsEnergy()-1,16
fBodyGyro-maxinds-Z
modyAcc-max(]-X
tBodyGyro-correlationt)y, Z
angle(Y, gravityMean)
fBodyAaccMag-madi()
tGravityAcc-meant)-X
tGravityAcc-stdi)-X
tGravityAcc-meanj-y
fBodyGyro-maxinds-X

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4. AdaBoost feature importance

62

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

Gravity Acc Mean vs. Max, by Activity

1.0 Activity
WALKING
WALKING_UPSTAIRS
0.8 1 WALKING_DOWNSTAIRS
SITTING
STANDING
0.6 1 ° LAYING
|
> L]
< 04 ¢
]
E
g
T 027
=
i
2 00+
-
—0.2 |]
—0.4 1 s

T T T T
-1.0 —-0.5 0.0 0.5 1.0
tGravityAcc-mean()-X

Figure 5. Gravity Acc Mean vs. Max, by Activity

SVM linear performed the best out of the classical models. The classes are already almost
linearly separable with the features. The scatterplot in figure 5 shows clear clusters—where A linear
boundary (a weighted sum of a few of these stats) is enough to predict if a datapoint is laying or not.
The horizontal axis shows the gravity acceleration along the phone’s X-axis. In the graph, when
acceleration is negative, all datapoints are lying down. This makes sense because the phone is
attached to the participants’ waist, so the x axis would be vertical and gravity would pull
“downwards”. The vertical axis shows the maximum gravity acceleration along the phone’s Y-axis.
Lying is higher than the rest and this might happen when they are lying down on their side. Figure 6
shows the top 10 features ranked by their mean weight across classes in a linear SVM (Support
Vector Machine) model. The learned weights also align with sensor physics: gravity-related statistics
separate static postures (LAYING/SITTING/STANDING), while gyro-based measures, how fast and
in which direction the device is rotating for each axis, help with dynamic classes (WALKING and
stairs). A repeated mistake on the confusion matrix is SVM predicting standing for sitting, which all
the other classical models struggle with as well.

63

Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29093

Top 10 features by linear SVM weight

tBodyGyrojerk-entropy/()-X

tBodyGyroMag-iqr()

angle(X,gravityMean)

tBodyAcc)erk-entropy()-Z

tBodyGyrojerk-arCoeff()-X,2

tBodyGyrojerk-arCoeff()-Z,1

fBodyGyro-entropy()-X

tGravityAcc-mean()y

tGravityAcc-max()-y

tGravityAcc-min()-Y

I T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Mean |weight| across classes

Figure 6. Top 10 features by linear SVM weight
4. Conclusion

In this study, the simplest and most reliable takeaway is that linear SVM gave the best single-model
results, and stacking several strong models together gave the best results overall. The CNN slightly
beat the RNN because it is good at finding short, repeated motion patterns in the 128-step windows,
while the RNN focuses more on long-range order that was less important here. The RBF SVM did
not beat the linear SVM, likely because these engineered features are already close to linearly
separable after scaling, so extra nonlinearity did not help. Random Forest and KNN were
competitive but made similar mistakes on look-alike classes (sitting vs. standing, walking up vs.
down). In terms of size, KNN uses the least memory, while stacking uses the most among classical
models because it keeps three models plus a small combiner. Overall, our results suggest that simple
margins (linear SVM) generalize well, and that combining models (stacking) can add small gains.
For future work, the plan is to look into reducing “walking downstairs” false positives, and try out
image recognition datasets in the human activity recognition domain.

References

[1] Hammerla et al. (2016) Deep, Convolutional, and Recurrent Models for Human Activity Recognition using
Wearables.

[2] MDPI Paper (2020) Comparing Human Activity Recognition Models Based on Sensor Data.

[3] Gaikwad et al. (2024) Benchmarking Classical, Deep, and Generative Models for Human Activity Recognition.

[4] Ahmad et al. (2020) Human Activity Recognition using Multi-Head CNN followed by LSTM.

[5] Mathew et al. (2023) Human activity recognition using Single Frame CNN and ConvLSTM.

[6] Khan & Hossni (2025) Comparative Analysis of LSTM Models Aided with Attention and Squeeze-and-Excitation
Blocks for Activity Recognition (Scientific Reports)

64

