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Abstract. In recent years, Brain-Computer Interface (BCI) technology has advanced rapidly,
emerging as a critical bridge between the human brain and external devices with promising
applications in medical rehabilitation, intelligent control, and other fields. However, the
accurate parsing of neural signals and efficient prediction of user intent remain key
challenges that hinder the widespread practical implementation of BCI systems. This study
focuses on the deep analysis of BCI neural signals based on AI intent prediction, aiming to
address two core research questions: how to enhance the accuracy of AI-based intent
prediction through in-depth neural signal analysis, and which AI algorithms are most
suitable for processing BCI neural signal data. First, relevant research progress was
systematically summarized through a literature review. Then, the characteristics of BCI
neural signals were analyzed using data analysis techniques. Finally, the effectiveness of
different AI algorithms was verified via algorithm simulation. The research results
demonstrate that integrating advanced AI algorithms with deep neural signal analysis
technology can significantly improve the accuracy of intent prediction. This finding not only
provides a new approach to overcoming the existing bottlenecks in BCI technology but also
lays a theoretical and practical foundation for the further development and application of
BCI systems.
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1. Introduction

BCI technology, which establishes direct communication between the human brain and external
devices without relying on traditional peripheral nervous systems, has gained wide attention from
academia and industry. In medical rehabilitation, it offers hope to patients with severe motor
disabilities (e.g., amyotrophic lateral sclerosis (ALS) or spinal cord injuries) by enabling control of
assistive devices via thoughts [1]. In intelligent control, it has the potential to revolutionize human-
computer interaction in virtual reality (VR) and augmented reality (AR).

Despite promising prospects, BCI systems face critical challenges. Low intent prediction
accuracy is a major issue: neural signals are complex, variable, and easily contaminated by
physiological artifacts (e.g., eye blinks, muscle tension) and environmental electromagnetic
interference, complicating feature extraction and intent decoding [2]. Latency is another bottleneck;
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even a few hundred milliseconds of delay can degrade performance in real-time tasks like prosthesis
control.

To address these challenges, researchers increasingly integrate AI with BCI neural signal
analysis. Machine learning (ML) and deep learning (DL) excel at processing high-dimensional data
and identifying subtle patterns, aligning with neural decoding needs. This paper explores how AI-
driven intent prediction can deepen BCI signal interpretation, improving accuracy and reducing
latency.

The study adopted a three-step approach: (1) a systematic literature review to map advances in
BCI and AI intent prediction, identifying gaps; (2) data analysis to characterize BCI neural signals
(complexity, variability, low amplitude, noise vulnerability) to guide AI model selection; (3)
algorithm simulations to benchmark classical ML (Support Vector Machines, Linear Discriminant
Analysis) and DL (Convolutional Neural Networks, Recurrent Neural Networks, Transformers) for
signal decoding and intent prediction.

This study is significant theoretically (advancing knowledge of BCI-AI synergy) and practically
(guiding BCI system design to enhance performance and promote applications in medicine, industry,
and daily life) [3].

2. Overview of BCI and AI intent prediction

2.1. Basic principles of BCI technology

BCI works by capturing neural signals, processing them, and converting results into commands,
forming a direct brain-external device link. A standard system includes five stages:

Signal Acquisition: Captures neural signals via invasive (electrodes implanted in brain tissue,
high resolution but risky) or non-invasive (EEG, MEG, fNIRS; safer but lower signal quality)
methods [4].

Preprocessing: Removes noise/artifacts using filtering (low-pass, high-pass), artifact suppression
(e.g., independent component analysis for eye blinks), and normalization.

Feature Extraction: Isolates task-relevant features (time-domain: amplitude, latency; frequency-
domain: power spectral density; time-frequency: wavelet coefficients).

Classification/Recognition: Uses ML/DL to translate features into user intent (e.g., distinguishing
left/right hand motor imagery).

Application Interface: Converts intent into device commands (e.g., controlling prostheses or
wheelchairs) [5].

2.2. Development status of AI intent prediction

AI intent prediction in BCI involves decoding neural signals to discern user intent, with rapid
progress driven by ML/DL.

2.2.1. Traditional ML

Support Vector Machines (SVM): Finds optimal hyperplanes to maximize class margins, performing
well in high-dimensional spaces (e.g., motor-imagery decoding, P300 speller tasks) [6].

Linear Discriminant Analysis (LDA): Reduces dimensions by maximizing between-class/within-
class scatter ratio, offering high accuracy with low computational cost for linearly separable data.



Proceedings	of	CONF-SPML	2026	Symposium:	The	2nd	Neural	Computing	and	Applications	Workshop	2025
DOI:	10.54254/2755-2721/2026.TJ29094

67

2.2.2. Deep learning

Convolutional Neural Networks (CNNs): Captures spatial structure in signals (e.g., EEG electrode
activity distribution) via convolutional layers [7].

Recurrent Neural Networks (RNNs): (LSTM/GRU variants) model temporal dependencies, ideal
for dynamic BCI tasks.

Transformers: Uses self-attention to capture long-range dependencies, effective for complex
temporal neural signals [8].

Challenges remain: inter-individual neural variability, signal drift (due to fatigue/mood), and
scarce annotated data limiting model generalization.

2.3. Significance of combining BCI and AI intent prediction

Improved Accuracy: AI (especially DL) automatically learns complex features from raw signals,
capturing low-level (amplitude/frequency) and high-level (motor imagery patterns) information [9].

Reduced Latency: Lightweight AI models embedded in edge devices eliminate delays from heavy
signal processing.

Enhanced Adaptability: AI learns user-specific neural patterns and adjusts in real-time, enabling
personalized control without manual recalibration. It also fuses multi-modal data (EEG, MEG,
ECG) for richer intent inference [10].

Advanced Neuroscience: AI uncovers brain function mechanisms by analyzing large neural
datasets.

3. Characteristics and acquisition of BCI neural signals

3.1. Characteristics of BCI neural signals

3.1.1. Complexity and variability

Neural signals are complex due to non-linear, non-stationary interactions of billions of neurons.
Variability stems from: (1) inter-individual differences (anatomy, activation patterns); (2) intra-
individual drift (fatigue, mood, attention); (3) recording context (electrode placement, task
instructions) [11]. Traditional signal processing (assuming stationarity/linearity) struggles, leading to
low BCI accuracy.

3.1.2. Weakness and noise interference

Neural signals are weak (EEG: microvolts (μV), vs. ECG/EMG: millivolts (mV)). Noise includes:
Physiological: Eye blinks, muscle tension, heartbeat.
Environmental: Power-line hum (50/60 Hz), electronic interference [12].
Noise suppression (filtering, artifact removal) is critical but imperfect; filters may distort signals,

and artifact-rejection tools do not eliminate all noise.

3.2. Acquisition methods of BCI neural signals

3.2.1. Invasive acquisition technology

Implants electrodes directly into brain tissue for high-resolution, high signal-to-noise ratio data:
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Intracortical BCIs: Microelectrodes in the cerebral cortex capture single-neuron activity, enabling
precise control (e.g., monkey-operated robotic arms) [13].

ECoG BCIs: Electrodes on the cortex capture broader activity, with better spatial resolution than
EEG.

Limitations: Surgical risks (infection, hemorrhage), long-term signal degradation (scar tissue),
high cost, and specialized expertise needs [14].

3.2.2. Non-invasive acquisition technology

Captures signals from the scalp without surgery, suitable for widespread use:
EEG: Dominant method, with millisecond temporal resolution, low cost, and portability, but low

spatial resolution and high noise.
MEG: Detects magnetic fields, offering better spatial resolution than EEG but requiring

expensive shielded rooms.
fNIRS: Measures brain blood oxygenation, portable and low-cost but with low temporal

(seconds) and spatial resolution [15].
fMRI: Tracks blood flow for high spatial resolution but slow (seconds/minutes), unsuitable for

real-time BCI.

4. AI algorithms for BCI neural signal analysis and intent prediction

4.1. Traditional machine learning algorithms

4.1.1. Support Vector Machines (SVM)

A supervised classifier that maximizes class margins via optimal hyperplanes. In BCI, it decodes
neural signals (e.g., distinguishing left/right hand motor imagery) using temporal/spectral features.

Advantages: Performs well in high-dimensional spaces, effective with small samples, handles
non-linearity via kernels (linear, polynomial, RBF) [16].

Limitations: High computational complexity for large datasets, sensitive to kernel/regularization
parameters requiring extensive cross-validation.

4.1.2. Linear Discriminant Analysis (LDA)

Reduces dimensions by maximizing between-class/within-class scatter ratio, used for feature
reduction and classification in BCI.

Advantages: Fast training/testing, interpretable linear boundaries, high accuracy for linearly
separable data (e.g., P300 spelling).

Limitations: Relies on assumptions (multivariate normal distribution, common covariance
matrix) violated by neural signals, sensitive to outliers.

4.2. Deep learning algorithms

4.2.1. Convolutional Neural Networks (CNN)

Adapts to 1D neural signals via convolutional (extracts local features), pooling (downsamples), and
fully connected (integrates features) layers. In BCI, it learns spatial-temporal patterns from raw EEG
(e.g., motor imagery) without manual feature engineering.
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Advantages: Automatically learns hierarchical features, good generalization, real-time processing
via lightweight architectures and GPU/TPU acceleration [17].

Limitations: Requires large labeled datasets (risk of overfitting with small data), high
computational load for deep architectures.

4.2.2. Recurrent Neural Networks (RNN)

Processes sequential data via a hidden state carrying temporal information. LSTM/GRU variants
solve vanishing gradients to capture long-range dependencies. In BCI, they model dynamic signals
(e.g., real-time prosthesis control).

Advantages: Handles variable-length sequences, captures temporal dynamics, integrates with
other DL models (e.g., CNNs) for multi-modal learning.

4.2.3. Transformer models

Uses parallel self-attention to model dependencies across sequences, faster than RNNs. In BCI, it
captures long-range temporal patterns in EEG signals.

Advantages: Superior long-range dependency tracking, fast training/inference, flexible for
diverse BCI tasks [18].

Limitations: High computational/memory cost (quadratic scaling with sequence length), needs
large labeled datasets.

5. Deep analysis process of BCI neural signals based on AI intent prediction

5.1. Preprocessing of neural signals

5.1.1. Noise removal

Independent Component Analysis (ICA): Separates multi-channel signals into independent
components (neural activity, artifacts), removing artifacts to clean signals. Effective for non-
stationary noise but needs many channels and manual component review.

Wavelet Transform: Denoises via frequency-band thresholding, preserving signal
temporal/spectral features but dependent on wavelet basis and threshold rules.

5.1.2. Feature extraction

Extracts intent-related features to reduce dimensionality:
Time-domain: Mean, variance, peak amplitude (simple but noisy).
Frequency-domain: Power spectral density (PSD) in mu (8-13 Hz)/beta (13-30 Hz) bands (key

for motor imagery) via Fourier transform.
Time-frequency domain: Wavelet coefficients, STFT magnitude (captures dynamic patterns) via

wavelet/STFT.
DL models (CNNs/RNNs) automatically learn features, eliminating manual engineering and

uncovering subtle patterns.
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5.2. Construction of intent prediction models

5.2.1. Establishment and division of datasets

A high-quality dataset includes neural recordings (from participants performing BCI tasks: motor
imagery, P300 spelling) and labels. Construction steps: (1) Define protocol (task, participants,
recording settings). (2) Collect data with minimized artifacts/environmental noise. (3) Clean signals
and label (e.g., "left hand" for motor imagery). (4) Datasets are split into training (70%), validation
(15%), and test (15%) sets. Cross-validation (k-fold, leave-one-subject-out) ensures reliable
evaluation, especially leave-one-subject-out for assessing generalization to new users.

5.2.2. Training and optimization of models

Loss Functions: Cross-entropy/hinge loss for classification; MSE for regression.
Optimizers: Adam/RMSprop (adaptive step sizes) outperform SGD for faster convergence.
Learning Rate: Balances training speed and accuracy; adaptive methods (Adam) adjust rates

automatically.
Regularization: L1/L2 regularization, dropout, early stopping prevent overfitting.
Models are tuned iteratively via validation set metrics (adjusting network depth, learning rate) to

optimize performance.

5.3. Verification and evaluation of analysis results

5.3.1. Evaluation metrics

Classification: Accuracy (overall correctness), precision (avoid false positives), recall (detect true
positives), F1-score (balanced measure), confusion matrix (granular performance).

Regression: MSE, MAE (error), R² (variance explained).
Real-time: Latency (signal acquisition to intent prediction) critical for tasks like prosthesis

control.

5.3.2. Experimental verification

Test the trained model on the unseen test set.
Calculate metrics (accuracy, F1-score) by comparing predictions to labels.
Revise models/parameters if performance is insufficient.
Ablation studies analyze component contributions; head-to-head comparisons with baseline

models ensure competitiveness.

6. Challenges and solutions in applications

6.1. Challenges

Inter-individual (anatomy, activation) and intra-individual (fatigue, mood) variability cause the
"user-adaptation problem" (model failure on new users) and "session-adaptation problem" (accuracy
drift over time), hindering large-scale BCI deployment.

Real-time BCI tasks (prosthesis control) require minimal latency. Delays in acquisition,
preprocessing, or inference degrade usability, demanding streamlined pipelines.
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6.2. Solutions

6.2.1. Design of adaptive algorithms

Adaptive Preprocessing: Tunable filters/ICA parameters improve noise suppression with new data.
Adaptive Classification: Incremental learning updates model parameters with new samples;

transfer learning uses multi-user data to reduce labeled data needs for new users.

6.2.2. Optimization of system hardware and software

Hardware: GPUs/TPUs accelerate DL; embedded boards enable edge deployment; high-speed
acquisition reduces transfer delays.

Software: Lightweight DL models, sparse matrices, and parallel processing speed up
computation; tight module integration (acquisition-preprocessing-inference) minimizes hand-off
lags.

Key challenges persist: (1) Individual neural variability: Adaptive algorithms/transfer learning
show promise but need faster convergence for new users/signal drift; large multi-centre datasets are
needed. (2) Real-time performance: Hardware/software optimization has reduced latency, but ultra-
low-latency edge AI models are required.

Future directions: (1) Multi-modal signal fusion (EEG+MEG+fNIRS) via advanced algorithms to
enhance accuracy. (2) Address ethical/privacy issues (sensitive neural data) with guidelines and
protection mechanisms.

7. Conclusion

This study focuses on the deep analysis of BCI neural signals based on AI intent prediction, aiming
to address the key challenges of low accuracy and poor real-time performance in BCI systems. The
research covers several aspects, including the overview of BCI and AI intent prediction, the
characteristics and acquisition of BCI neural signals, the AI algorithms for neural signal analysis and
intent prediction, the deep analysis process of neural signals, and the challenges and solutions in
application. The research results show that the combination of AI technology and BCI neural signal
analysis can significantly improve the accuracy of intent prediction. Traditional machine learning
algorithms, such as SVM and LDA are effective in handling low-dimensional feature data and have
good performance in some simple BCI tasks. Deep learning algorithms such as CNN, RNN, and
Transformer models, with their ability to automatically learn complex hierarchical features from raw
neural signals, show great potential in improving the performance of BCI systems, especially in
complex tasks with high-dimensional and dynamic neural signals.

The deep analysis process of BCI neural signals, including noise removal, feature extraction,
model construction, and result verification, is crucial for ensuring the accuracy and reliability of
intent prediction. Effective noise removal techniques can improve the quality of neural signals,
while appropriate feature extraction methods can highlight the discriminative information. The
establishment of high-quality datasets and the reasonable division of training, validation, and test
sets are essential for the training and evaluation of AI models. The optimization of model training
parameters and the use of regularization techniques can prevent overfitting and improve the
generalization ability of the model.

However, this study also has some limitations. First, the research on some advanced AI
algorithms; Second, the experimental data used in this study is relatively limited, and the
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generalization ability of the proposed models needs to be verified on larger and more diverse
datasets. Future research should collect more data from different user populations and different
application scenarios to build more comprehensive datasets; and focus on the development of
lightweight models and efficient system architectures to reduce the processing latency.
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