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Abstract. The Transformer architecture has transformed natural language processing (NLP)
by enabling efficient sequence modeling through self-attention and embedding techniques.
However, its ability to adapt to domain-specific data, such as protein sequences, introduces
both unique computational challenges and opportunities. As the sequence space increases,
the understanding of architectural differences is crucial for improving model efficiency and
generalization. This study aims to investigate the fundamental differences between protein
language models (PLMs) and traditional text-based language models (LLMs), highlighting
their modeling principles, embedding structures, and attention mechanisms. By reviewing
and analyzing the relevant literature, the methods adopted by PLMs and LLMs are explored,
emphasizing their unique features. The results reveal that PLMs, with their sparse attention
mechanism and highly linearly separable embeddings, demonstrate superior capabilities in
processing long sequences for pattern extraction, while language models focus on semantic
dependencies. These differences reveal the potential for cross-domain optimization, helping
to improve the application of Transformers in sequence analysis and generation.
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1. Introduction

The function of a protein is dictated by its amino acid sequence, and designing new proteins with
specific functions usually relies on computational modeling to predict their structures [1]. However,
the vast number of possible sequences makes de novo protein design highly challenging. To address
this issue, protein sequences are treated as “text,” and natural language processing (NLP) methods
are applied to learn sequence patterns, thus enabling sequence generation and optimization to assist
functional design. While protein language models (PLMs) excel in protein sequence analysis and
design, their differences from text-based language models in modeling principles, hence embedding
representations, and attention mechanisms remain not fully understood [2,3]. Despite partial transfer
of NLP pretraining strategies to protein sequences, PLMs capture biological information, structural
features, and functional patterns in ways that differ from how text-based language models capture
text semantics. As such, this study compares PLMs with text-based language models. Specifically, it
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reviews the principles, pretraining methods, and applications of existing protein language models,
including Evolutionary Scale Modeling 2 (ESM2), Protein T5 (ProtT5), Protein GPT-2 (protGPT2),
and Protein BERT (ProtBert), as well as text-based language models such as Generative Pre-trained
Transformer (GPT), Bidirectional Encoder Representations from Transformers (BERT), and classic
Transformers [2,3]. Therefore, the comparison highlights predictive performance, embeddings, and
attention, focusing on differences in information capture, interpretability, and use. This study helps
support the effective use of PLMs for protein sequence analysis and design, expands Transformer
applications to more scenarios, and drives progress toward fully domain-specific intelligent models.

2. Transformer and its applications in different language models

2.1. The mechanism of Transformer in text language models

Based on an encoder-decoder structure, Transformer is a deep learning model that operates through
core mechanisms such as self-attention and multi-head attention [4]. The self-attention mechanism
allows the model to dynamically adjust weights according to the relationships between words in the
sequence, effectively capturing long-range dependencies, especially excelling in NLP tasks. Besides,
multi-head attention boosts the ability of the model to attend to diverse features and semantics by
performing multiple attention calculations in parallel. This design gives Transformer advantages in
sequence tasks like representation, generation, and prediction. Built on the Transformer architecture,
BERT and GPT demonstrate unique features in task performance [5]. In particular, BERT adopts an
encoder-only architecture that learns sequence representations by leveraging bidirectional context.
Its ability to capture both left and right context makes it particularly effective in tasks like question
answering and sentiment analysis, enhancing its grasp of word meanings and sentence structure [6].

This design confers upon BERT a distinct advantage in sequence representation and
comprehension tasks. In contrast, GPT utilizes a decoder-only architecture, generating text in a left-
to-right fashion. It focuses on sequence generation, excelling in tasks such as text generation and
language modeling [7]. Due to its unidirectional design, GPT prioritizes sequence generation over
understanding word relationships. Thus, BERT’s bidirectional encoder and GPT’s unidirectional
decoder directly impact their performance in sequence modeling.

2.2. The architecture of Transformer in protein language models

In a similar way to NLP, protein language models (PLMs) depend on the Transformer architecture,
which can be divided into encoder-only, decoder-only, and encoder-decoder models, depending on
the specific task. The design of each architecture directly determines its effectiveness in modeling
protein sequences. First, Evolutionary Scale Modeling 2 (ESM2) is an encoder-only protein large
language model trained with a masked language modeling (MLM) objective, similar to BERT, and
employs 65 million protein sequences for training [8]. Through large-scale unsupervised learning, it
extracts structural insights from evolutionary data and processes protein sequences with multi-head
self-attention and feed-forward networks to capture essential features. This enables ESM2 to excel
in sequence representation and feature extraction. In contrast, ProGen is a decoder-only protein
generation model, with its first version containing 1.2 billion parameters, which is increased to 6.4
billion parameters in the ProGen2 series [9,10]. Similar to decoder-only models like GPT, ProGen
focuses on protein generation tasks and is trained through unsupervised learning with the goal of
predicting the next amino acid. As a result, ProGen has a significant advantage in protein generation,
especially for generating novel protein sequences. Additionally, ProtT5 adopts an encoder-decoder
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structure, based on Google’s T5 model design. The encoder processes protein sequences to extract
contextual features, while the decoder is used for generating sequences or performing downstream
tasks (such as predicting variant effects) [11]. As a bidirectional encoding architecture, ProtT5 fully
leverages contextual information to boost its sequence generation and task prediction capabilities.

3. Predictive performance metrics and their applicability

Perplexity (PPL) is an important metric for evaluating the predictive ability of language models,
reflecting how well a model fits the probability distribution of sequences. Autoregressive models,
like the GPT series, can directly compute standard PPL through cross-entropy, which indicates the
model’s ability to predict the next token [7]. However, for models trained with a MLM objective,
such as BERT or certain PLMs like ESM-2 and ProtT5, standard PPL cannot be directly computed
because they do not have a full generative probability distribution.

To overcome this issue, the pseudo-log-likelihood (PLL) method can be applied, in which the
model sequentially predicts the probability of each masked token in the sequence and accumulates
the log-likelihood [12]. Formally, it is defined as Equation 1.

(1)

where     represents the sequence with the i-th token replaced by [MASK]. Based on the PLL,
the pseudo-perplexity (pseudo-PPL) can be further computed as Equation 2.

(2)

This metric is similar to standard PPL but serves as an approximation, hence making it useful for
evaluating the performance of MLM models in sequence modeling tasks [8,13].

The size of the vocabulary and the choice of tokenization method greatly influence a model’s
capacity to identify sequence patterns. In NLP, methods such aa WordPiece or Byte-Pair Encoding
(BPE) typically produce vocabularies of tens of thousands of subwords. For example, BERT has a
vocabulary of approximately 30k, while GPT-2 has around 50k [6,14]. Larger vocabularies enhance
the model’s ability to capture rare patterns but come at the cost of higher computational complexity,
whereas smaller vocabularies are computationally more efficient but may miss nuanced details. In
protein sequences, each residue is typically treated as a token, resulting in a small vocabulary of
around 20-33 tokens, including special symbols [8-11]. When comparing PPL across domains, it is
important to focus on relative changes or normalized results rather than raw values. This is because
perplexity metrics not only reflect how well a model fits the training sequence distribution but also
correlate with downstream tasks such as sequence generation, classification, and prediction. In fact,
better sequence pattern capture, indicated by lower PPL or pseudo-PPL, generally leads to improved
performance in subsequent tasks.

4. Embedding features and their differences in protein language models

There are notable gaps in the embedding features between PLMs and text-based language models.
These variations are evident in semantic granularity, separability, scalability, and also in how they
incorporate physical constraints and biological contexts.

In particular, embeddings map tokens like words in language models or amino acids in protein
models) as dense vectors, thus capturing both their semantic meaning and contextual information. In

PLL(w1,…,wn)=∑n
i=1 logP(wi∣w∖i)

w∖i

pseudo−PPL = exp(− 1
n

PLL(w1, … , wn))
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text-based language models, embeddings represent semantic and syntactic information, enabling
direct application to tasks such as text classification, sentiment analysis, and question answering. In
contrast, embeddings in PLMs encode evolutionary information, secondary and tertiary structure
cues, and functional site signals, resulting in different application contexts and task objectives
[15,16].

When comparing the embeddings of these two types of models, the first point to note is their
differences in semantic granularity. Embeddings in text-based language models primarily focus on
encoding grammatical and semantic information, enabling them to be directly applied to a variety of
text-based tasks. However, embeddings in PLMs represent biological concepts, such as domains or
functional regions, thus establishing more intricate semantic relationships at the biological level.
Prior studies have shown that protein sequences in the embedding space often form clusters based
on families, structural categories, or functional labels, while such clustering patterns are less
common in text model embeddings [16]. Moreover, the differences in linear separability are worth
highlighting. In PLMs, linear probing approaches can effectively recover complex biological
characteristics from embeddings, hence indicating a stronger linear separability in protein model
embeddings [11,15]. In contrast, linear separability in text-based language models is primarily suited
for simpler tasks like sentiment analysis, whereas more complex reasoning tasks still require
nonlinear decoding layers. In addition, as the scale of the model increases, embeddings exhibit new
“emergent capabilities.” For instance, when ESM-2’s parameter scale reaches billions, it is able to
capture more detailed sequence representations, improving the accuracy of downstream predictions
[8]. Similarly, ProGen2 shows improved protein design abilities as its parameter scale increases,
fueled by the physical foundation and constraints of PLMs, whereas text-based models rely on
statistical patterns, ignoring physical structural constraints [10].

Furthermore, PLMs and text-based language models differ in scalability and interpretability. As
the model scale grows, protein models like ESM-2 and ProGen2 capture more detailed sequence
information, supporting more accurate predictions [8,10]. In contrast, text-based language models
focus on modeling semantic richness and long-range dependencies. For example, GPT-3/4 models,
when scaled to hundreds of billions of parameters, demonstrate few-shot learning and chain-of-
thought reasoning abilities [17,18]. However, these abilities are captured primarily through abstract
patterns at the language level, rather than inferred at the physical structure level. PLMs have a
physical foundation and natural constraints, with embeddings that carry real physical meaning and
are governed by physical laws. In contrast, text-based models lack such “natural physical
constraints.” The embeddings of large-scale LLMs focus on internalizing statistical patterns, rather
than geometric laws.

5. The attention mechanism of natural language and protein language models

The attention mechanism improves model performance by assigning weights to different parts of the
input data, dynamically focusing on the parts most relevant to the task [4]. It enables the model to
selectively focus on important information by calculating the correlation (weight) between each
element in the input sequence and the target output. While attention plays a central role in both text
language modeling and protein sequence modeling, its application varies because of variations in
sequence length and structural traits

In terms of context length, text-based language models like the BERT and GPT series typically
process shorter text sequences, with input lengths generally ranging from 512 to 2048 tokens. Their
attention mechanisms are mainly used to model grammatical and semantic relationships, such as
subject-verb-object dependencies or cross-sentence reasoning [6,17]. In contrast, protein sequences
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are usually much longer than natural language sentences, averaging 300 to 1000 residues, with some
even exceeding 2000. Handling these long sequences poses a significant challenge for both the
platform running the model and the model itself. Thus, PLMs commonly utilize sparse or local
attention mechanisms to minimize quadratic complexity and maintain local dependencies [19,20].

Moreover, attention modes differ. The attention layers of text-based language models have been
experimentally shown to exhibit a hierarchical function: lower layers primarily capture lexical and
local dependencies, while higher layers gradually encode semantics and discourse relations [20]. In
contrast, attention in PLMs captures both local dependencies along the sequence and more complex
global patterns specific to the domain. Previous research has shown that the attention mechanism in
protein language models can exhibit structural awareness beyond linear token dependencies. For
example, certain attention heads correspond to higher-order sequential patterns, indicating that
PLMs capture both local context and broader, domain-specific regularities [11,19].

In terms of inductive bias and interpretability, attention in text-based language models is often
used to explain linguistic structures, like pronoun resolution preferences in BERT [21]. In contrast,
the biological interpretability of attention in protein language models is much more prominent. It
often corresponds to both local dependencies and higher-order sequence structures, highlighting
important sequence elements. For example, larger PLMs like ESM-2 exhibit attention distributions
that capture increasingly rich structural information as the model scale grows [22]. Thus, text-based
and PLMs both rely on the Transformer’s self-attention to capture global dependencies.

6. Conclusion

The study reveals that both PLMs and text-based large language models are built upon a common
foundation in the Transformer architecture. However, there are many differences in their objectives,
representations, and interpretability. Text-based language models focus on capturing semantic and
syntactic patterns in human language, but PLMs encode the evolutionary, structural, and functional
properties of proteins according to physical and biological laws. These differences are evident in
tokenization approaches, evaluation criteria such as perplexity and semantic embeddings, and the
biological plausibility of attention mechanisms. In contrast to text-based language models that learn
abstract statistical patterns, PLMs’ embeddings and attention mechanisms typically align with real
physical constraints. The clarification of differences reveals application pathways for Transformer
models across diverse fields and steers the creation of more biology-oriented models. Furthermore,
comparative analysis of embeddings, tokenization, evaluation metrics, and attention mechanisms
uncovers challenges and opportunities in protein modeling, with insights being transferable to other
atypical language models. Moving forward, the integration of NLP advancements with Transformer
adaptations for sequential data is anticipated to drive progress in computational sequence modeling,
embedding optimization, and attention-based architectures across various domains, thereby fueling
innovation in data-driven computing.
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