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Under the backdrop of the "carbon neutrality" goal, the integration of the
integrated energy system (IES) and MMAI is expected to become a key research
direction.Firstly, IES plays a significant role in optimizing energy allocation, promoting the
intelligent transformation of energy, and enhancing energy utilization efficiency. However, it
still has issues such as complexity, multiplicity, and uncertainty. Secondly, the optimization
methods of traditional integrated energy systems encounter numerous problems when
dealing with high-dimensional, heterogeneous, and time-varying multimodal data, including
excessively high computational complexity and difficulties in handling heterogeneous
data.Therefore, Therefore, the introduction of MMAI technology is required the system's
ability to handle the complexity and diversity of data. This paper adopts the research
approach of "theoretical analysis - architecture construction - mechanism explanation -
challenge outlook" to explore the integration mechanism of multimodal Al in IES. Research
has shown that MMALI can achieve efficient processing and rapid adaptation of multimodal
data through a closed loop of "perception - cognition - decision - control", thereby
enhancing the intelligence level of the system. However, the technological development of
MMALI integrated with IES still faces multiple challenges. To address these challenges, in
the future, our research efforts should be focused on the data level, algorithm level, and
system level. This technology has multiple research directions, such as developing
lightweight and interpretable multimodal fusion models, constructing an IES multimodal
open benchmark dataset and simulation platform, and exploring new paradigms for the
integration of physical mechanisms and data-driven approaches.

Integrated Energy System (IES), Multi-modal Artificial Intelligence Technology
(MMALI), SCADA time series data

The increase in global temperatures due to greenhouse gases emitted from human activities
represents the most significant consequence [1]. In response, China has introduced the "Dual Carbon
Strategy," which aims to reach a peak in carbon emissions by 2030 and achieve carbon neutrality by
2060 [2]. Accordingly, China intends to expedite the transition to a new energy framework, enhance
energy efficiency, secure energy resources, and foster green, low-carbon growth. However, the
conventional energy system is inadequate for fulfilling the requirements of low-carbon development.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1



Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29794

The integrated energy system (IES) offers complementary energy sources and coordinated supply,
which can improve the efficiency and cleanliness of energy consumption at the end user level [3].
The Integrated Energy System (IES) has garnered significant interest from both researchers and
industry professionals. IES integrates diverse energy forms such as electricity, heating, cooling, gas,
and hydrogen, along with the cooperative use of three primary types of modal data: data-based,
image-based, and text-based modalities [4]. It is widely accepted that this system can enhance
overall energy efficiency [5] and improve the alignment of supply with demand [6]. Consequently,
the Integrated Energy System is seen as a crucial focus for the future transformation and
development of energy and power [7]. Nevertheless, it also involves the intricacies of multi-energy
flow interactions, along with the conflicts arising from various entities and differing objectives. As a
result, its capability to address complex issues still has limitations. Without the right system
configuration and optimal operational strategies, this system cannot fully tap into its potential.
Consequently, to enhance the advantages of Integrated Energy Systems (IES), optimization of the
system is essential [8]. Employing multimodal artificial intelligence (MMAI) for system
optimization is a practical and effective strategy. The functioning of conventional IES relies on
optimization techniques derived from mathematical programming and intelligent algorithms. The
foundation of these approaches involves the construction of precise multi-energy flow coupling
models and efficient intelligent algorithms, among other components. However, it is important to
note that this approach is not without its limitations, which include deficiencies in model accuracy
and generalization. To illustrate this point, consider the application of machine learning in the
domains of load forecasting and fault diagnosis. Machine learning algorithms are capable of
extracting potential patterns from historical operation data, thereby constructing prediction and
decision-making models. This, in turn, enhances the accuracy of predictions and the rationality of
scheduling. Concurrently, it can detect the normal operation of equipment and achieve the function
of fault diagnosis. Multimodal learning research has made significant progress. In the domain of
computer vision, the rapid advancements in artificial intelligence (Al) technology, particularly the
significant progress in deep learning algorithms, have led to noteworthy achievements in ophthalmic
disease diagnosis by Al systems based on single-modal data, such as fundus photographs or optical
coherence tomography (OCT) [9]. In the field of natural language processing, multimodal Al finds
extensive application in areas such as machine translation and sentiment analysis. However, extant
research continues to operate at the level of single-modal data or a single technical approach,
impeding comprehensive elucidation of the intricate coupling relationships and dynamic
mechanisms in multi-energy systems. A paucity of in-depth analyses exists from a system theoretical
framework and mechanism level regarding the role mechanism of multimodal artificial intelligence
(MMAI) in the optimized operation of integrated energy systems (IES). This has resulted in the
failure to realize the full potential of MMALI, hindering support for the global optimization and
intelligent development of IES. Consequently, this paper adopts "multimodal fusion" as the research
starting point, constructs the MMAI-IES integrated theory framework, analyzes its core integration
mechanism, deduces its application value, and systematically examines the challenges it faces.

During the optimization and operation of the integrated energy system, a variety of data sources are
utilized. However, a taxonomy can be proposed based on the presentation forms of these
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phenomena. This taxonomy would include three main modalities: data modalities, image modalities,
and text modalities. Consequently, the varied data modalities mirror the multifaceted dimensions of
information concerning the operational mode, information sources, and management of operations
of the IES. The following is a list of the primary characteristics that were identified during the
analysis.

1) Numeric modal data: Representative sources include: The term "SCADA" (Supervisory
Control and Data Acquisition system) refers to a system that acquires and processes data from
Sensors.

Characteristic analysis: Continuity and real-time nature: Information collection systems, such as
sensors, sample data at a high frequency, thereby reflecting the dynamic characteristics changes of
the system.

Multi-source integration: The integration of heterogeneous data from multiple sources, including
sensors and SCADA systems, is a critical component of the data management process.

The present study demonstrates a high degree of structuring. Numerical data are characterized by
a fixed format, a property that facilitates storage and calculation.

The presence of noise and missing values is a concern. Such issues may include mechanical
accuracy, communication delay, or equipment failure, which can result in abnormal points or
missing values.

2) Image-based modal data: Representative sources include: The utilization of infrared thermal
imaging and video surveillance techniques constitutes a methodical approach to surveillance.

Characteristic analysis: The presence of a substantial amount of information: A single frame
image can contain over ten thousand pixels.

The level of uncertainty is high. The acquisition of data is influenced by various factors,
including weather conditions, lighting conditions, and the angle at which the image is captured. This
results in a significant degree of uncertainty.

The following are notable spatial distribution characteristics: The image has the capacity to
directly reflect the spatial state.

3) Textual Modal Data: Typical sources: Operation and Maintenance Reports, Weather Texts.

Characteristic analysis: Unstructured and highly semantic: The text data is mostly described in
natural language, with flexible information expression but low degree of structuring.

High domain specificity: The operation and maintenance reports contain a large number of
industry terms, abbreviations, and equipment codes.

Timeliness and context dependence: For example, weather forecast texts have a close relationship
with operation scheduling and have strong constraints on timeliness.

Data acquisition relies on natural language processing technology: Semantic parsing and
knowledge extraction need to be carried out by means of techniques such as word segmentation,
named entity recognition, and knowledge graphs.

The theoretical foundation of multimodal artificial intelligence (MMAI) mainly consists of three
core aspects: multimodal representation learning, cross-modal alignment, and information fusion.
The integrated energy system (IES) involves the acquisition of multi-source heterogeneous data and
the coupling of multiple energy flows. Therefore, the rational application of multimodal artificial
intelligence technology to the integrated energy system can enable the efficient processing and rapid
adaptation of multi-modal data by the integrated energy system.
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1) Multimodal Representation Learning: Multimodal representation learning refers to the process
of representing data from multiple different sources using machine learning techniques. Through
translation, alignment, fusion, and collaborative learning, it maps these data to the same feature
space to fully preserve semantic information and correlations [10]. Multimodal learning
representation can be divided into joint representation and coordinated representation.

Joint representation: Joint representation is achieved by constructing a shared feature space,
mapping the inputs of multiple modalities to a unified representation, thereby capturing the intrinsic
connections among multiple modalities.

Coordinated representation: Coordinated representation ensures the comparability between
modalities while preserving the independent features of each modality by using constraints and
mapping functions.

In the IES system, through multimodal representation learning, data modalities such as data type,
image type, and text type can be unifiedly represented, enabling cross-modal state analysis and
prediction.

2) Cross-modal Alignment: Different modalities differ in terms of time scale, spatial distribution
rate and semantic hierarchy, and the establishment of corresponding relationships requires the
implementation of alignment mechanisms.

Temporal alignment: The cross-modal alignment system ensures the establishment of the
relationship between multi-modal data by synchronizing SCADA time series data with video
surveillance frames.

Spatial alignment: The cross-modal alignment system needs to align infrared images with
equipment topology or sensor positions to achieve spatial consistency.

Semantic alignment: The cross-modal alignment system can correlate fault events described in
operation and maintenance text with abnormal systems of images or numerical data through natural
language processing.

Cross-modal alignment is an important prerequisite for achieving complementary and
coordinated multi-modal information.

3) Information Fusion: The purpose of information fusion is to integrate multi-modal
information, thereby enhancing the expression ability and decision-making accuracy of each
modality. The fusion strategies can be divided into three parts: early fusion, mid-fusion, and late
fusion.

Early fusion: Early fusion combines and maps multi-modal information at the feature level, but
this 1s only applicable to data with high correlation between modalities.

Mid-fusion: Mid-fusion captures the correlations between modalities through sharing a multi-
modal interaction module in a dynamic manner.

Late fusion: Late fusion integrates the outputs of independent models of each modality at the
decision level to enhance the robustness of the system.

In the IES system, information fusion not only compensates for the deficiencies of single-modal
data but also provides more comprehensive basis in fault diagnosis, assessment of operating status,
and predictive scheduling.

In the intelligent journey of the integrated energy system (IES), traditional single-modal information
processing is unable to fully depict the state of the system and is insufficient for supporting adaptive
scheduling in complex environments. Therefore, we need to enhance and improve it with artificial
intelligence technology. The common artificial intelligence algorithms in multi-modal systems
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include convolutional neural networks (CNN), deep learning, and ensemble methods [9]. This paper
proposes a "perception - cognition - decision - control" four-layer integrated framework based on
multi-modal artificial intelligence algorithms, which can achieve systematic design from data
acquisition to closed-loop control.

1) Perception Layer: The perception layer forms the foundation of the architecture and is
primarily responsible for the collection and preprocessing of multi-source heterogeneous data.

Data collection: Data collection encompasses various types of data such as data values (SCADA,
sensors), image-based (infrared thermal imaging, video surveillance), and text-based (operation and
maintenance reports, weather text).

Preprocessing: Preprocessing can perform tasks such as noise reduction, data completion,
normalization, and structuring on the raw data to ensure the accuracy and usability of the data.

This layer ensures that the system possesses comprehensive and real-time environmental
perception capabilities.

2) Cognitive Level: The cognitive layer is the core of the entire architecture and plays a role in
understanding and unifying the representation of multimodal information. The main function of the
cognitive layer in the IES system is to achieve feature extraction, cross-modal alignment, and
multimodal fusion.

Feature extraction: Feature extraction uses deep learning methods to represent high-level features
of different modal data.

Cross-modal alignment: Cross-modal alignment solves the differences in sampling frequency,
spatial resolution, and semantic level of multimodal data through temporal synchronization and
semantic mapping.

Multimodal fusion: Multimodal fusion refers to using methods such as attention mechanisms,
graph neural networks, or contrastive learning to fuse multimodal features into a unified state
representation, forming a comprehensive representation of the operating conditions of the IES.

3) Decision-making level: The decision-making layer performs optimization calculations and
intelligent decisions based on the unified representation of the integrated state. The functional
mechanism of the decision-making layer mainly consists of three parts: optimization scheduling,
intelligent prediction and diagnosis, and decision-making mechanism.

Optimization scheduling: Utilizing multi-objective algorithms to achieve coordinated operation
of energy flow, information flow, and material flow.

Intelligent prediction and diagnosis: Based on the fusion model, load forecasting, fault diagnosis,
and risk assessment are conducted.

Decision-making mechanism: Combining methods such as reinforcement learning and game
theory to enhance the system's adaptive ability in uncertain environments.

4) Control Layer: The control layer is responsible for converting the results of the decision-
making layer into executable control instructions and applying them to the system through actuators.
The functions of the control layer mainly include two parts: instruction issuance and system
feedback.

Instruction issuance: Dispatching instructions to various energy devices (such as power grids,
energy storage systems, and cold and heat source devices).

System feedback: Real-time collection of system operation results and feeding them back to the
perception layer, thereby forming a closed loop of the "perception-cognition-decision-making-
control" four-layer integrated framework.

This layer ensures the dynamic controllability and self-adaptive optimization of the IES
operation.
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5) Overall framework analysis: This four-layer framework is based on data collection from the
perception layer, centered on multi-modal fusion in the cognitive layer, driven by optimization
computing in the decision-making layer, guaranteed by execution and feedback in the control layer,
forming a complete and intelligent closed-loop system. This architecture provides a systematic
theoretical framework support for the efficient, stable and intelligent operation of IES.

3. Explanation of core integration mechanism and application analysis
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Figure 1. The process of mapping cloud charts and power curves into a shared space

The key to the application of multimodal artificial intelligence (MMAI) in integrated energy
systems lies in achieving an enhancement of the system's perception, cognition, decision-making,
and control capabilities by deeply integrating heterogeneous data such as images, time series, and
text. Within the "perception-cognition-decision-control" four-layer framework, the cross-modal
representation and semantic alignment mechanism completes the unified representation of
multimodal data at the perception layer, realizes feature fusion and understanding of complex
operating conditions at the cognition layer, and provides reliable input and semantic consistency
verification at the decision-making and control layers. Figure 1 presents this process in an image
format in detail. Here, "image" represents the sky cloud map, and the coordinate graph represents
the output of photovoltaic power. The two share data through the shared representation space. The
image data and power output data are represented in the same feature space through cross-modal
representation learning.

3.1. Cross-modal representation and semantic alignment mechanism

In the integrated energy system, there are significant differences in heterogeneous data. For instance,
sky cloud images and power drops. Sky cloud images represent weather boundaries in the form of
images, while the output of photovoltaic power is expressed in a numerical time sequence to
indicate the energy conversion results. Although both sets of data originate from meteorological
factors, due to the different data forms, there exists a "semantic gap". The role of MMALI is to
construct cross-modal mapping through shared representation space, enabling heterogeneous data to
be characterized by consistent semantic vectors.

The implementation path for integrating MMAI with the integrated energy system mainly
consists of two steps: Firstly, feature extraction for different modalities is carried out using deep
neural networks. Convolutional Neural Network (CNN) can automatically learn image features,
thereby significantly improving classification accuracy and efficiently processing complex image
data [11]. Therefore, we can extract spatial texture and structural information as image data through
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CNN; time series data can be captured by Recurrent Neural Network (RNN), Long Short-Term
Memory Network (LSTM), or self-attention mechanism. Subsequently, through projection networks
or contrastive learning methods, the features of different modalities are embedded into a shared
latent space. In this space, visual features such as cloud thickness and movement trajectories in the
cloud image can be correlated with the power decline trend.

Secondly, we can enhance the correlation between modalities through the semantic alignment
mechanism. Specifically, we employed maximum mutual information constraints, cross-modal
attention mechanisms, or contrastive loss functions to enable the model to continuously adjust the
functions during training, ensuring that "semantically equivalent" features converge in the shared
space, thereby achieving deep correlations between the data. For instance, when the system detects
rapidly moving thick clouds in the satellite image, the model can respond quickly and predict that
the power curve is about to decline.

3.2. Mechanism of information complementation and redundancy verification

In addition to semantic alignment, the core of multimodal intelligence also includes a key
mechanism of information complementarity and redundancy verification. The operation of
integrated energy systems is complex, and a single information source often has issues such as
insufficient coverage, excessive noise, and failure risks. However, MMAI can achieve more
comprehensive and robust perception and decision-making through different forms of
complementarity and redundancy.

INFORMATION REDUNDANCY AND
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Figure 2. The process of jointly diagnosing equipment failures through images, vibrations and
parameter data

Firstly, complementarity is manifested in the fact that different modalities can depict the same
state from multiple perspectives. For instance, when a wind turbine is in the monitoring state, the
image mode can identify the spatial patterns of ice formation on the blades or structural damage,
while the vibration sensor can capture the resulting minor mechanical abnormalities; the operating
parameters can supplement the load and environmental background information. The specific
process is shown in figure 2. Here, "image" represents the spatial patterns, "vibration" represents
minor mechanical abnormalities, and "parameter" represents the operating parameters. When these
three are integrated, the system can form a complete state perception, thereby overcoming the
limitations of a single mode.
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Secondly, redundancy manifests as repeated measurements of the same physical quantity by
multiple modalities. For instance, the temperature of a device can be derived from an infrared
thermal imaging image, or directly obtained using a thermocouple sensor. When one of the sensors
fails for some reason, the data from the other modalities can provide verification and compensation,
thereby preventing data loss. This redundancy mechanism significantly improves the fault tolerance
and security of the system, ensuring that the system can still maintain stable monitoring of critical
operating parameters under extreme conditions. The dual effects of information complementarity
and redundancy verification enable multi-modal fusion not only to be a data overlay, but also to
achieve an enhancement in the information hierarchy, thereby enhancing the robustness and fault-
tolerant capability of the system's perception.

After integrating MMALI with the comprehensive energy system through the above mechanism, it
demonstrates strong application potential. From this, we infer that three classic scenarios can be
used as a basis for performance analysis:

Scene 1: Ultra-short-term prediction of renewable energy

The difficulty of accurately predicting the output of wind and solar power due to rapid changes in
weather conditions has always been a challenge for this technology. If relying solely on data-based
weather forecasting, there will be a problem of insufficient time resolution, while relying only on
sky images will lack quantitative characterization capabilities. Therefore, by integrating two types of
modal data, namely "data weather + sky images", this system can capture the corresponding
relationship between cloud movement trajectories and radiation intensity in the shared
representation space, thereby achieving precise data prediction within seconds to minutes.

Scene 2: Predictive Maintenance of Equipment

The operational health of energy equipment is closely related to the reliability of the system. A
single-modal energy equipment is difficult to detect the early signs of system failures, while modal
fusion can achieve high-precision diagnosis of faults. For example, when monitoring the same
operating system, infrared images can identify abnormal temperature increases, vibration signals can
reveal the damage of mechanical components, and operating parameters can provide background
information on load and environmental conditions. MMAI maps these three types of modalities to a
shared space, enabling the capture of potential signs before the faults have expanded, thus achieving
early and precise diagnosis. Utilizing artificial intelligence (Al), especially machine learning (ML)
and deep learning (DL) technologies, is a promising research field for addressing the limitations of
traditional predictive models [12].

Scene 3: Multi-scale Coordinated Scheduling of Time

The traditional scheduling of integrated energy systems needs to consider the physical coupling
of multiple energy flows (such as electricity, heat, and gas), economic constraints from market
signals, and load requirements from user behaviors. However, in a single mode condition, the
scheduling model often has difficulty simultaneously taking into account multiple aspects such as
economy and environmental protection. However, by integrating "multi-energy flows + market
signals + user behavior" data, intelligent energy resource management and planning can be achieved
[12]. For example, in the short term, rapid responses can be achieved based on user load
characteristics, and in the medium and long term, reasonable strategies can be formulated in
combination with market economic conditions. Thus, it is possible to achieve dual optimization of
economic cost and carbon emissions, improve energy utilization efficiency and promote green
development.
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Although MMALI has significant application potential in the integrated energy system, there are still
many difficult problems at the theoretical and technical levels that need to be solved. Among them,
issues at the data level, algorithm level, and system level are the key challenges in the integration
process.Data level: Due to the complex multi-modal data types involved in the integrated energy
system, which cover various data such as images, time-series sensor data, market signals, and user
behaviors, some unavoidable problems will arise. Among them, issues such as data heterogeneity,
lack of annotations, low quality, and privacy security have always been the key challenges in
research. Firstly, there is a significant heterogeneity in data. Different modalities have considerable
differences in dimensions, temporal and spatial resolutions, and expression forms. Direct fusion
would encounter the problem of "semantic gap". Secondly, annotation is often missing, especially in
scenarios such as fault diagnosis of energy equipment and prediction of extreme weather, where
limited data volume makes it difficult for the model to obtain sufficient monitoring signals. Thirdly,
the quality of data varies greatly. For instance, issues such as sensor noise, communication
interruptions, and missing measurements significantly affect the stability and robustness of the
model. Fourthly, there are user privacy and security concerns. Data security in cloud systems also
faces risks from advanced network threats, such as network-based attacks, like XSS vulnerabilities
[13]. Therefore, how to strike a balance between data sharing and protection is a key challenge for
the application to be implemented.

Algorithmic level: The current mainstream polymorphic models mostly rely on deep neural
networks, and their "black box" nature leads to insufficient interpretability. Moreover, energy system
decision-making often directly affects operational safety and economic effects, thus the current
mainstream polymorphic models have difficulty gaining technical trust. Furthermore, the energy
multimodal data is massive, and both the training of the model and its inference involve high
computational complexity, which limits its application in scenarios with extremely high real-time
requirements. On the other hand, the model's generalization ability is insufficient. The model
performs well in a single scenario, but when it is transferred to different regions, different devices,
or systems with different energy structures, its performance will significantly decline, indicating that
the system has a weak adaptability to complex and changing environments and insufficient
generalization ability.

System level: The operation of IES relies on the close coupling of software and hardware. Firstly,
there is a high degree of difficulty in seamlessly integrating multimodal Al modules into the existing
energy management system, especially the issue of insufficient compatibility, which limits the cross-
platform and cross-protocol data exchange and functional collaboration to a certain extent. Secondly,
energy systems typically demand extremely high reliability and practicality. Therefore, to meet the
operational standards of energy systems, the fault-tolerant and stable design of the MMAI model
needs to be utilized. However, current research mostly focuses on the algorithm level and lacks
fault-tolerant and security mechanisms for the entire system.

In response to the above issues, future research can be conducted in the following aspects.
At the model level: We need to develop lightweight and interpretable multimodal fusion methods.
On one hand, we can reduce computational costs through techniques such as pruning, knowledge
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distillation, and model compression, enabling adaptation for edge computing and real-time
applications. On the other hand, we should introduce methods such as causal reasoning, visual
attention mechanisms, and symbolic logical constraints to enhance model transparency and
interpretability, thereby increasing the trust of industry decision-makers in Al

At the data level: We need an open and shared IES multi-modal benchmark dataset and
simulation platform. Firstly, by standardizing data formats, evaluation metrics, and scenario designs,
it can effectively promote the horizontal comparability and vertical accumulation of research results.
Secondly, the virtual data generated based on the bionic platform can make up for the shortcomings
of real data, providing a broader training environment for the improvement of the robustness and
generalization of the model.

At the paradigm level: We need to explore the deep integration of physical mechanisms and data-
driven approaches. Firstly, we need to understand that models solely relying on data-driven methods
are difficult to capture the complex physical constraints and operating laws in the energy system.
However, the paradigm fusion based on methods such as physical information neural networks can
embed physical equations and energy conservation laws during the training process, achieving better
adaptation to small sample cases or abnormal working states, and providing a reliable guarantee for
the safe and controllable optimization of the system.

System level: We need to enhance the cross-level collaborative design of "Al-software-chip".
Through the collaborative optimization of software and hardware, we can significantly optimize the
real-time inference efficiency and energy consumption performance of the model, thereby meeting
the computing power requirements of the energy system at different levels. At the same time, we
should promote cross-level open standards, covering model interfaces, data exchange, security fault
tolerance, etc., to form a complete industrial ecosystem and a sustainable development path.

In summary, the application of MMALI in IES is still in the exploration stage. However, through
continuous research and breakthroughs at the four levels of model, data, paradigm and system, it is
expected to achieve a leap from experimental verification to continuous deployment, thereby
providing strong support for the intelligent and low-carbon transformation of future energy systems.

This paper focuses on the integration of the integrated energy system (IES) and multimodal artificial
intelligence (MMAI), and conducts research by constructing a systematic "MMAI-IES integration
framework". Through logical analysis and mechanism exploration of each layer including
perception, cognition, decision-making, and control, it reveals the unique advantages of MMALI in
achieving multi-source data fusion, precise state representation, and intelligent optimization
decision-making. The study shows that MMALI has the ability to enhance the operational efficiency
and stability of IES, and also possesses great potential to drive the energy system towards intelligent
and low-carbon transformation.

In terms of theory, this article innovatively presents two concepts: Firstly, it systematically
proposes the overall framework of the MMAI-IES integration, which compensates for the
shortcomings of existing research that mostly focuses on a single modality or a single technology;
Secondly, through mechanism analysis, it clarifies the role mechanism of multi-modal learning in
complex energy systems, providing theoretical support and methodological references for future
research.

However, this study is mainly based on literature review and theoretical deduction, and lacks
large-scale experimental verification. Future research should further combine real energy system
operation data to conduct framework validation and optimization application. At the same time, it is
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necessary to explore the adaptability and scalability of MMAI in multi-objective optimization, real-
time control, and cross-system collaboration, in order to promote the intelligent development of
integrated energy systems.
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