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In the era of artificial intelligence, Internet of things and big data, processing
massive data puts forward unprecedented requirements for the throughput and energy
efficiency of computing systems. In traditional von Neumann architectures, frequent data
movement between processor and memory results in significant energy consumption and
latency, known as the“Memory Wall” problem. In this paper, the principle, application and
performance of variable resistance random-access memory (RRAM), magnetoresistive
random-access memory (MRAM) and ferroelectric random-access memory (Feram) in the
memory computing (CIM) structure are studied in depth. CIM technology is considered to
be the key to overcome the“Memory wall” bottleneck inherent in the traditional von
Neumann architecture. Firstly, the physical mechanism and characteristics of these three
storage technologies are systematically described. Subsequently, a detailed analysis of their
effectiveness in various application scenarios is provided through innovative simulation
designs: RRAM-based neuromorphic chips (neurrams) exhibit superior energy efficiency in
simulation calculations; MRAM exhibits performance close to conventional memory in non-
volatile caching and in-memory logic applications; while FeERAM has unique advantages in
ultra-low-power binary neural networks (BNNS). A comprehensive comparative analysis
demonstrates the complementarity of their technical paths, and proposes future integration
strategies for heterogeneous computing systems. This study adopts a co-design perspective
across device, circuit, and architecture levels to provide important theoretical foundations
and design insights for the development of next-generation efficient heterogeneous
computing systems.

CIM, non-volatile memory, RRAM, neuromorphic computing

CIM architecture, which embeds computational functions within memory and performs data
processing in situ, is poised and has emerged as a critical technological direction in the post-Moore's
Law era. Among various candidate technologies for CIM, emerging non-volatile memories such as
RRAM, MRAM, and FeRAM have garnered widespread attention due to their unique physical
properties (e.g., resistance state, magnetization direction, polarization state) and excellent
compatibility with CMOS processes.
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Current research focuses on performance optimization or a single memory technology. For
instance, studies from institutions like Stanford University have deeply explored the potential of
RRAM crossbar arrays in neural network inference [1]. Research from companies like Everspin and
Samsung has advanced the commercialization of MRAM as an embedded non-volatile memory
[2,3]. At the same time, studies on FERAM have long focused on its ultra-low-power advantages in
microcontrollers and embedded systems [4,5]. However, there is a lack of literature that
systematically compares and analyzes these three technologies within a unified framework, failing
to fully reveal their respective application boundaries and complementary symbiotic relationship in
future heterogeneous computing systems. The innovation of in contrast to prior studies that often
overlook practical device imperfections, our simulation framework incorporates more realistic non-
idealities—such as RRAM variability, MRAM write latency, and FeRAM destructive read—
ensuring that the conclusions drawn are of stronger practical relevance. Moving beyond the scope of
research focused on individual technologies, this work clearly articulates a “complementary and co-
operative” development relationship among RRAM, MRAM, and FeRAM, and further proposes a
forward-looking heterogeneous computing architecture integrating these memories on a single chip.
A hierarchical computing system optimization was proposed, with application scenarios ranging
from cloud inference to edge perception [6].

This paper lies in conducting a horizontal, systematic comparative study of RRAM, MRAM, and
FeRAM from the unified perspective of CIM architecture. Moving beyond mere elaboration, this
research employs a complete chain of design-simulation-validation to quantitatively evaluate the
performance, energy efficiency, and reliability of the three technologies in different application
scenarios (neural network inference, non-volatile caching, low-power computing).

The new memory devices are designed to overcome the limitations of traditional Flash memory and
Dynamic random access memory (DRAM) in terms of speed, durability, power consumption and
integration density, meet the high-performance, low-power, Non-volatile random-access memory
requirements of future computing systems. RRAM works by reversibly changing the resistance of a
material under an applied electric field. Its basic structure consists of metal-insulator-metal (Mim)
sandwich. A shaping voltage applied to the initial insulator, such as an oxide, produces conductive
filaments. Subsequently, voltages of different polarity and amplitude are applied to control the
breaking and conducting wires, thus storing the data “0” and “1”. Write operations are performed by
applying either a SET voltage (for LRS) or a RESET voltage (for HRS) , while read operations use a
small read voltage to detect the battery resistance without changing its state [7] . RRAM offers
simple structure, fast read/write speed, low power consumption, excellent nano-scale scalability, and
strong compatibility with CMOS process, which can be used to improve the performance of RRAM,
making it a promising candidate for the next generation of Non-volatile random-access memory and
computational memory architectures.

MRAM utilizes electron spin rather than charge to store data. Its core unit is a magnetic tunnel
(MTJ), which consists of two ferromagnetic layers separated by a thin insulating tunnel barrier [8].

One ferromagnetic layer has a fixed magnetization direction (reference layer), while the other has
a switchable direction (free layer). The cell exhibits low resistance when the magnetizations are
parallel and high resistance when they are antiparallel, a phenomenon known as the Tunneling
Magnetoresistance (TMR) effect. Traditional MRAM used current-induced magnetic fields to switch
the free layer’s magnetization (Toggle MRAM), whereas the newer STT-MRAM (Spin-Transfer
Torque MRAM) directly uses spin-polarized current to switch magnetization, significantly reducing
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power consumption and cell size [9]. MRAM offers near-unlimited endurance, very fast read/write
speeds comparable to DRAM, non-volatility, and high radiation hardness, making it suitable for
high-speed cache, embedded applications, and harsh environments.

FeRAM leverages the intrinsic properties of ferroelectric materials, which have two stable
spontaneous polarization directions (up or down) that remain even after the external electric field is
removed [10]. This bistable characteristic corresponds to data "0" and "1". A typical FeERAM cell
consists of one ferroelectric capacitor and one access transistor (1T1C). During a write operation, a
strong electric field sets the polarization direction. During a read, a known electric field 1s applied
and the sensing current is detected. Since the read process is typically destructive, it must be
followed by a rewrite operation to restore the data. FERAM offers fast read/write speeds, low power
consumption (especially for writes, much lower than Flash), radiation hardness, and high endurance
far exceeding Flash. However, its main challenges include a relatively large cell size and difficulty
in significantly increasing storage density. It is widely used in embedded microcontrollers (MCUs),
smart cards, and specific industrial applications.

3. Applications and prospects of RRAM, MRAM, and FeRAM

Building upon the foundational principles of emerging memory devices, this chapter delves into
their innovative applications within computing architectures, with a particular emphasis on in-
memory computing and neural network acceleration. Through tailored simulation designs and
rigorous performance analysis, we evaluate the efficacy of RRAM, MRAM, and FeRAM in
executing high-efficiency, low-latency inference tasks, highlighting their distinct roles in
overcoming the limitations of traditional von Neumann systems.

3.1. RRAM-based neuromorphic computing

The study first examines RRAM-based neuromorphic computing chips, leveraging the inherent
crossbar array structure of RRAM to perform vector-matrix multiplication—a core and energy-
intensive operation in neural networks. By mapping network weights to the conductance states of
RRAM cells and applying input voltages along word lines, output currents are integrated on bit lines
to accomplish multiply-accumulate operations computationally in place. Our simulation
incorporates a holistic framework combining a VTEAM (Voltage Threshold Adaptive Memristor
Model) -based RRAM device model, peripheral circuitry including sense amplifiers and data
converters, and neural network algorithms such as CNNs and RNNs. Special attention is given to
assessing inference accuracy under real-world non-idealities like device variability and noise.
Results demonstrate that the RRAM-based CIM architecture achieves over an order of magnitude
improvement in energy efficiency for tasks including image classification and speech recognition,
with negligible accuracy degradation of less than 1%, underscoring its promise for high-throughput
and low-power edge Al inference [11-13].

3.2. MRAM for non-volatile cache and in-memory logic

Shifting focus to MRAM, the research explores its applicability in non-volatile cache and in-
memory logic, capitalizing on its high speed, endurance, and non-volatility as a competitive
alternative to SRAM and embedded Flash. Using SPICE-compatible MTJ models and spin-circuit
simulation methodologies, we designed and evaluated MRAM memory cells alongside their
read/write circuitry, quantifying performance metrics including access latency, power consumption,
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and retention at advanced technology nodes. Additional simulations investigated MRAM-based
logic-in-memory structures for direct Boolean execution. The analysis confirms that MRAM
significantly reduces standby power and supports instant-on functionality as a last-level cache or
embedded working memory. However, its write energy and latency remain higher than those of
volatile SRAM, restricting deployment in the most speed-sensitive cache tiers. These findings
position MRAM most favorably in use cases demanding frequent reads and moderate write
demands, such as storage for Al model parameters [14].

Finally, the potential of FERAM is evaluated in the context of ultra-low-power binary and ternary
neural networks, exploiting the bistable polarization of ferroelectric capacitors to represent discrete
weights. A FERAM crossbar model is constructed to simulate BNN inference, incorporating
material-specific switching dynamics and nonideal behavior. An efficient pulse coding strategy is
designed to convert the input data into a driving voltage sequence. Simulations on datasets including
MNIST and CIFAR-10 show that the FeRAM-based system achieves competitive accuracy while
consuming minimum power. Although the Feram operation is inherently destructive and requires
read-after-recovery, the energy cost is still substantially lower than that of Flash-based alternatives,
confirming that FeRAM is a compelling technique in energy-critical edge inference applications,
and it is a promising candidate for future applications, especially when cost and power constraints
are critical [15].

Table 1. Comparative analysis of RRAM, MRAM, and FeRAM in compute-in-memory applications

Characteristic RRAM (NeuRRAM) [1,16] MRAM (STT) [2,17] FeRAM [5,13]
Computing Analog In-Memory I . .
Paradigm Computing Digital In-Memory Logic / NV Cache Analog/Digital IMC
Energy Very High (Analog), 55.8— High (Read: <1 pJ/bit), Medium High (esp. for Binary Nets), <10
Efficiency 100+ TOPS/W (Write: 1-10 pJ/bit) fJ/bit for switching
Speed High (Parallel), Read: <10 ns,  Very High (Read: <5 ns), Medium High, Read/Write: ~30 ns

Write: ~10 ns (Write: 10-50 ns)

Medium-High (4-8 bits,
affected by variability)

Integration Very High (4F? crossbar),  Medium (CMOS compatible), ~20-50

Medium (1-3 bits for

High (Digital Precision, 1-8 bits) Binary/Ternary)

Precision

Medium (1T1C cell), ~20-30 F?

Density ~0.001 um?/cell F?
Maturit Under R&D (Lab to early Emerging (Embedded, Cache), Mature (Embedded), Widely
Y commercial) Commercial products available used in MCUs

Primary High-Efficiency Edge AI, NV Cache, Al Weight Storage, Instant-

Application Analog Compute On Ultra-Low-Power BNNs, MCUs

A systematic comparative analysis of the three technologies reveals a complementary—rather
than competitive—relationship, as summarized in the table below. Each technology excels in
specific domains: RRAM in highly parallel analog computing, MRAM in high-endurance digital
caching and storage, and FERAM in ultra-low-power binary processing. This synergy suggests that
future heterogeneous systems will benefit from integrating multiple memory types, leveraging their
respective strengths across different hierarchy levels to achieve optimal system-level performance
and efficiency.

As summarized in Table 1, RRAM demonstrates very high energy efficiency in analog
computing, a finding consistent with recent neuromorphic computing studies. MRAM shows high
read efficiency and is well-suited for non-volatile cache applications, while FeRAM excels in ultra-
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low-power binary neural networks. Future heterogeneous computing systems may integrate multiple
memory types to leverage their optimal performance at different hierarchy levels.

4. Technologies and characteristics of RRAM, MRAM, and FeRAM

This chapter provides an in-depth comparative analysis of the technical characteristics, performance,
and application prospects of the three emerging non-volatile memories: RRAM, MRAM, and
FeRAM. The analysis is based on the principles and application simulation results presented in
previous sections, and is contrasted with mainstream research in the field to objectively assess the
maturity, advantages, and challenges of each technology.

4.1. Device performance analysis

The simulation results of this study are highly consistent with numerous industry researches studies,
collectively confirming the disruptive potential of RRAM in CIM architectures. Its core advantage
lies in breaking the "memory wall" through analog computation, achieving exceptional energy
efficiency. However, its challenges are equally prominent, primarily including device conductance
variability and cyclic endurance. Compared to research from institutions like UC Santa Barbara, the
accuracy loss observed in our simulations (<1%) is at an advanced level, indicating that the impact
of device non-idealities can be mitigated to some extent through advanced programming algorithms
and circuit design.

Analysis shows that STT-MRAM is the emerging memory technology closest in performance to
conventional SRAM/DRAM. Its near-unlimited endurance and high-speed read performance make it
nearly unrivaled in the domain of non-volatile cache and embedded working memory. The write
energy and latency issues, a key focus of this study, are also the core challenges being addressed by
both academia and industry (e.g., Everspin, Samsung). Compared to recent research on Spin-Orbit
Torque MRAM (SOT-MRAM), STT-MRAM has an advantage in cell area, while SOT-MRAM
offers better write speed and energy consumption, representing the next evolutionary direction for
MRAM technology.

The simulations underscore the unique value of Ferroelectric RAM (FeERAM) in ultra-low-power
applications. Thanks to fast polarization switching, FERAM achieves low operating voltage and
energy consumption, making the technology highly attractive for IoT and edge devices. However,
the relatively low storage density—a limitation inherent to the ITIC structure—along with its
destructive read mechanism, restricts scalability in high-capacity storage applications. This
positioning closely aligns with the market strategy of leading FERAM suppliers such as Fujitsu and
Texas Instruments, who focus primarily on embedded MCUs.

4.2. Technology maturity and application track analysis

A comprehensive analysis reveals that these three technologies are not simply replacements for each
other but are developing in parallel along distinct application trajectories: RRAM primarily targets
future markets with extreme computational energy efficiency requirements, such as edge Al
accelerators and neuromorphic computing chips, though its technology is still transitioning from
R&D to early commercialization [18]. MRAM is currently experiencing rapid commercial adoption,
with clear application scenarios—treplacing embedded Flash and certain SRAM/DRAM as high-
performance non-volatile cache and memory—and has already gained initial traction in AloT,
automotive electronics, and high-performance computing; meanwhile, FeRAM has established itself
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as a niche leader in mature markets, holding a solid position in embedded control applications that
demand ultra-low power consumption, medium density, and high reliability, including smart cards,
medical devices, and industrial control systems.

Despite the promising prospects of CIM and emerging non-volatile memory technologies,
significant challenges remain in achieving widespread adoption and practical deployment. To fully
realize the potential of CIM in next-generation computing systems, future research should focus on
the following interconnected directions:

4.2.1. Advancing device technologies and integration processes

The performance and scalability of the CIM architecture are fundamentally limited by the
underlying storage devices. Continuous efforts are required to improve the uniformity, durability,
and reliability of the RRAM, especially in large-scale arrays, as inter-device variability may reduce
computational accuracy. In addition to RRAM, next-generation MRAM technologies such as spin-
orbit torque MRAM (Sot-mram) and voltage-controlled MRAM (VC-MRAM) provide promising
ways to further reduce the write energy and improve the switching speed, which can be used to
improve the performance of MRAM devices, make it more suitable for energy-efficient in-memory
computing. Similarly, FERAM studies should focus on developing high-density three-dimensional
(3D) cell structures to overcome scalability limitations. These advances must be accompanied by
innovations in process integration, including CMOS-compatible manufacturing and monomer 3D
stacking, to enable seamless and collaborative integration of memory and logic layers.

4.2.2. Architecture-algorithm co-design for robustness and efficiency

To bridge the gap between idealized models and real-world hardware, a tight co-optimization loop
between algorithms and architectures is essential. Future work should develop neural network
training and inference algorithms that are inherently robust to device non-idealities such as
conductance drift, programming noise, and cycle-to-cycle variability. This includes exploring
quantization-aware training, noise injection during training, and error-resilient network topologies.
On the architectural side, novel dataflow paradigms—such as hybrid analog-digital pipelines, sparse
computation models, and reconfigurable CIM fabrics—should be investigated to maximize
computational throughput and energy efficiency. Furthermore, new programming models and
compilers are needed to abstract hardware complexity and enable efficient mapping of diverse
workloads onto CIM platforms.

4.2.3. Heterogeneous system integration and full-stack evaluation

As computing systems move towards heterogeneous architectures that integrate CPU, GPU, DPU,
and dedicated accelerators, CIM must be designed as a first-class component in this ecosystem.
Research should explore advanced heterogeneous integration schemes, including chip-based designs
and high-bandwidth interconnects (e.g. , silicon photonics, 3d TSV) to tightly couple CIM units with
conventional processors. In addition, comprehensive system-level simulations and prototypes are
required, to evaluate end-to-end performance, power efficiency, and reliability under realistic
complex workloads such as real-time Al inference, large-scale data analysis, and edge computing
scenarios. This holistic approach will ensure that CIM solutions are not only efficient in isolation,
but also provide tangible benefits in full-stack computing environments.
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4.2.4. Expanding application domains and enhancing security

While the current focus is mainly on artificial intelligence and deep learning, the potential of CIM
extends to other computationally intensive areas such as scientific computing, graphics processing,
and database operations. At the same time, as data-centric computing becomes more common,
security and privacy issues become more important. Future CIM systems should include built-in
hardware security primitives, such as Physical unclable Functions (PUFS) for device authentication
and memory encryption to protect statically sensitive data. These features are critical for deploying
CIM in security-and privacy-sensitive applications, including edge artificial intelligence, healthcare,
and financial systems.

5. Conclusion

This study systematically explores and comprehensively analyzes the application potential of
RRAM, MRAM, and FeRAM in in-memory computing architectures. It is shown that, due to their
unique physical mechanisms, these three memory technologies exhibit significant and
complementary characteristics in the field of CIM: RRAM, with its simulation computing power
and high parallelism, can be used as a powerful tool for the design and implementation of memory
devices, mRAM, with its excellent read speed and durability, occupies an important position in high-
performance non-volatile caches and in-memory logical operations; Feram is an ideal solution for
ultra-low power edge intelligent applications due to its low power consumption. Further analysis
shows that CIM represents an effective way to break the“Memory wall” and improve the energy
efficiency of computing. The RRAM-based architecture is expected to achieve an order of
magnitude improvement in the energy efficiency of typical Al tasks while maintaining high
computational accuracy, which proves the feasibility of the transformation from theory to
application. The trajectories of these three technologies are parallel and complementary. Future
computing chip architectures will tend to be more heterogeneous, by flexibly integrating multiple
memory technologies in a unified system and enabling them to operate at different hierarchical
levels, such as cache, memory, and storage, as well as more heterogeneous architectures, achieve a
globally optimal trade-off between performance, power, and cost. In general, CIM Technologies
represented by RRAM, MRAM and Feram are expected to overcome the von Neumann bottleneck
and promote intelligent computing towards higher energy efficiency and integration. Through
continuous optimization in device mechanism, architecture design and system integration, they will
lay the foundation for the next generation of efficient, secure and intelligent computing systems.
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