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Semantic segmentation of high-resolution remote sensing imagery is pivotal for
applications such as land-cover mapping, urban planning, and environmental monitoring.
Since the introduction of U-Net, numerous variants have been proposed to address
challenges unique to satellite data—namely, extreme class imbalance, small-object
detection, and complex scene textures. This survey systematically reviews major U-Net
extensions (including U-Net++, ResUNet-a, HCANet, CCT-Net, DIResUNet, CM-UNet,
TransUNet, AER-UNet and U-KAN) and additional optimization techniques such as
incremental learning. This study compares their architectural innovations—e.g., nested skip
connections, residual or atrous blocks, multi-scale context modules, and attention
mechanisms—and summarizes reported performance on standard benchmarks (ISPRS
Vaihingen, Potsdam, GID, WHDLD, DeepGlobe, and GF-2). This work also identifies key
factors that drive segmentation accuracy and discusses remaining challenges and promising
directions for future research, including improved generalization, reduced annotation
dependency, and better trade-offs between performance and computational efficiency.
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Satellite imagery has become an indispensable source of data for earth observation, environmental
monitoring, urban planning, and disaster management [1]. Among the many tasks involving satellite
data, semantic segmentation of remote sensing (RS) images plays a crucial role, enabling detailed
land cover mapping, building footprint extraction, and change detection [1]. However, RS images
pose unique challenges for segmentation algorithms due to their high spatial resolution, complex
textures, class imbalance, and varying illumination conditions [2,3].

In recent years, deep learning-based methods have revolutionized the field of semantic
segmentation, achieving remarkable performance on natural and RS images alike. Among them, the
U-Net architecture has emerged as a particularly effective and popular choice, owing to its encoder—
decoder structure and ability to capture both global context and fine details [4,5]. Since its
introduction, U-Net and its numerous variants have been widely adopted and further developed for
satellite image segmentation tasks [6,7].

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
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This survey aims to provide a comprehensive overview of the role of U-Net variants in RS image
semantic segmentation, summarizing key advances, architectural innovations, and practical
applications. Specifically, it reviews notable improvements such as nested skip connections, residual
and attention mechanisms, multi-scale feature aggregation, and the incorporation of novel paradigms
like the Kolmogorov—Arnold Network (U-KAN). The paper also discusses benchmark datasets,
experimental comparisons, and optimization strategies, followed by an analysis of current
challenges and future research directions outlined in the conclusion section.

Semantic segmentation is a fundamental task in the field of computer vision (CV), aiming to
perform pixel-level classification of images. Unlike object detection or image classification, which
focuses on locating or categorizing entire objects or scenes, semantic segmentation assigns a specific
class label to each individual pixel, thereby enabling a more detailed understanding of visual
content. It partitions the image into coherent regions based on semantic similarity, with pixels
sharing the same category annotated with the same label.

This fine-grained analysis allows semantic segmentation algorithms to simultaneously recognize,
detect, and delineate visual elements within a scene, significantly enhancing the precision and
comprehensiveness of image interpretation. Compared with traditional CV tasks, semantic
segmentation provides richer spatial and structural information, which is essential for applications
that require precise localization and contextual understanding.

Due to its ability to extract detailed scene information, semantic segmentation has demonstrated
great potential across a wide range of applications. In autonomous driving, for example, it enables
the system to distinguish between roads, vehicles, pedestrians, and obstacles, thereby facilitating
safe navigation. In the context of remote sensing (RS), semantic segmentation plays a vital role in
numerous tasks.

Remote sensing (RS) image segmentation has become an indispensable task in the field of earth
observation, providing the foundation for a wide range of applications such as disaster assessment,
crop yield estimation, land cover mapping, and monitoring of environmental changes. As RS
technology and data acquisition capabilities continue to advance, segmentation methods have
evolved to meet the increasing demand for higher accuracy, efficiency, and scalability. Traditional
methods, while effective in certain scenarios, often struggle to cope with the high spatial resolution,
spectral heterogeneity, and complex textures present in RS images [8,9].

Deep learning approaches, particularly convolutional neural networks (CNNs), have
revolutionized RS image segmentation by enabling automatic feature extraction and end-to-end
training. Among these, the U-Net architecture, first introduced in 2015, has attracted widespread
attention due to its elegant encoder—decoder structure, skip connections, and fully convolutional
design [4]. U-Net builds upon the concept of fully convolutional networks (FCNs) and enhances
them with symmetric downsampling and upsampling paths, which facilitate precise localization
while capturing contextual information [5]. Table 1 outlines important parts of the U-Net.
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Table 1. Descriptions of components

Componen

: Description

Encoder Responsible for extracting increasingly abstract and high-level features from the input image. Consists of

convolutional layers to generate feature maps in different resolutions.
Decoder Implemented by transposed convolutions or interpolation—combined with convolutional layers to refine
the feature representations.
Ski . . Do . .
Connei tio Skip connections establish direct links between corresponding layers of the encoder and decoder at the

ns same resolution level.

The principal innovation of U-Net resides in its upsampling pathway, which leverages a
substantial number of feature channels to effectively restore and propagate contextual information to
high-resolution representations. As depicted in Figure 1, the network exhibits a symmetric, U-shaped
architecture. The left side constitutes the encoder (contracting path), adopting the typical design of
convolutional neural networks. This path applies repeated convolution and pooling operations,
where each pooling layer reduces the spatial resolution of the feature maps while simultaneously
enriching their depth. Such a mechanism enables the extraction of progressively abstract and
semantically meaningful features essential for segmentation.

input
image (&% Laldls
tile

output
segmentation
map

.‘ .L ‘ " " = conv 3x3, ReLU
} copy and crop
(== [ = e § max pool 2x2

- 4 up-conv 2x2
= conv 1x1

Figure 1. U-Net architecture

In contrast to standard CNNs, U-Net recovers the diminished spatial details through its decoder
(expanding path) on the right, which incrementally upsamples the feature maps. To further improve
segmentation fidelity, the U-Net integrates skip connections that directly link corresponding layers
in the encoder and decoder. These connections function as shortcut pathways, fusing low-level,
fine-grained features from the encoder with the higher-level decoder representations at matching
resolutions. This strategy mitigates the information loss incurred during downsampling and
facilitates more accurate and detailed segmentation outcomes. Figure 2 shows the number of
publications about U-Net and remote sensing since 2018.
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Figure 2. The number of U-Net remote sensing publications trend in last past years

U-Net remains a popular choice in various research domains because of its simple yet effective
design, robustness, and versatility [10]. Its applications have extended beyond biomedical imaging
to numerous RS tasks, including urban mapping, vegetation classification, and disaster monitoring.
Over the years, many U-Net variants have been proposed to further improve its performance in RS
scenarios, addressing challenges such as multi-scale object segmentation, boundary refinement, and
long-range dependency modeling [6,7].

U-Net is a suitable network for remote sensing image segmentation tasks. Since its simplicity and
powerful scalability, the U-Net architecture has been modified into numerous variants. These
modifications attempt to complement the shortcomings of the original U-Net in image segmentation
tasks. This paper proposed several developments in the U-Net, which is used in remote sensing
semantic segmentation.

U-Net++ [11] refines the standard U-Net through redesigned skip pathways and multi-scale deep
supervision. In this structure, encoder outputs pass through dense convolution blocks whose depth
depends on the pyramid level. Each layer connects to both the preceding convolution within the
same block and upsampled outputs from lower-level blocks. Deep supervision applies auxiliary loss
at various decoder stages rather than solely at the final output, accelerating convergence and
improving results for small-scale targets and imbalanced datasets.

ResUNet-a [12] replaces the U-Net’s conventional convolutions with enhanced residual units
[13], maintaining stable gradients in deeper models. Within each residual block, parallel atrous
convolutions [14,15] with different dilation rates expand the receptive field and capture spatial
correlations across scales. A pyramid scene parsing pooling layer [16] further strengthens contextual
understanding by incorporating broader scene information.

In HCANet [17], ResNet34 [18] serves as the encoder after removing its fully connected layers,
forming a UNet—ResNet34 hybrid. The decoder upsamples low-resolution maps and fuses them with
multi-scale features from the CASPP module. An extended CASPP+ module refines multi-scale
feature extraction and aggregation for improved segmentation on high-resolution imagery.

CCT-Net [19] combines CNN-based local modeling with Transformer-based global context
modeling [20]. The Local Adaptive Fusion Module (LAFM) and Coupled Attention Fusion Module
(CAFM) integrate dual-branch features. During inference, Overlapping Sliding Window (OSW),
Test-Time Augmentation (TTA), and post-processing (PP) steps help recover complete crop remote
sensing maps.

DIResUNet [21] employs residual links to ease gradient flow and support deep feature learning.
Atrous convolutions enlarge the receptive field without added computation, aiding recognition of
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varying object scales. A pyramid scene parsing pooling layer boosts global awareness, while an
adaptive Generalized Dice loss enhances convergence stability and generalization.

CM-UNet [22] applies channel attention in the encoder to emphasize critical shallow features.
Residual connections bridge encoder and decoder paths for richer contextual use. Instead of typical
upsampling, an improved sub-pixel convolution retains more details. A refined multi-feature fusion
block preserves semantic information and reduces decoding loss, improving segmentation accuracy.

TransUNet [23] integrates Transformer components into both encoder and decoder, uniting self-
and cross-attention for sequence-to-sequence segmentation. With a Transformer decoder and
learnable queries, segmentation becomes a mask classification task. This design strategically
embeds Transformers in the U-Net pipeline to address diverse segmentation challenges.

AER-UNet [24] enhances U-Net with attention mechanisms to suppress irrelevant background
and highlight key regions via self-attention or attention gates. Residual blocks aid deep feature
learning and avoid gradient issues. The model trains with an adaptive Adam optimizer (LR=0.001)
that merges RMSprop, momentum, and SGD benefits, achieving a balance between fast
convergence and stable learning while reducing overfitting risk.

U-KAN [25] introduces a Kolmogorov—Arnold Network (KAN)-based architecture into the U-
Net framework. Unlike CNNs that rely on fixed kernel operations, KAN employs spline-based
functions to model nonlinear mappings, enabling higher expressive capacity and smoother feature
transformation. In U-KAN, both encoder and decoder blocks are constructed with KAN layers,
preserving the hierarchical feature extraction ability of U-Net while enhancing adaptability to
complex spatial patterns in remote sensing imagery. Furthermore, U-KAN integrates a lightweight
attention refinement module to emphasize boundary information and suppress background noise.
This design improves segmentation accuracy, particularly for small or irregularly shaped targets,
while maintaining computational efficiency.

In addition to innovation on the Network, there are other optimization measures like incremental
learning. Incremental learning offers a practical strategy for expanding semantic segmentation
models to handle new classes over time without access to original labeled data. Tasar et al. [25]
propose maintaining a frozen snapshot of the previous model as memory, and learning new classes
by minimizing a composite loss: one term aligns old-class predictions to the frozen network
(distillation), while another supervises new-class classification.

This section introduces several benchmark datasets commonly used for semantic segmentation in
remote sensing, with sample visualizations provided in Figure 3. Table 2 then compares the
performance of various models on each dataset.

This section introduces a selection of widely used benchmark datasets for semantic segmentation in
remote sensing. These datasets are derived from high-resolution satellite or aerial imagery captured
by Earth observation sensors onboard satellites or aircraft. Each dataset offers distinct spatial
resolutions, spectral characteristics, and land-cover annotation schemes, providing diverse
evaluation scenarios for segmentation models.
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The ISPRS Vaihingen dataset consists of very-high-resolution aerial imagery over a small German
village [26]. It contains 33 ortho-rectified image patches (from a larger true orthophoto mosaic) with
9 cm ground sampling distance and an average size of about 25002000 pixels. Each image also
includes a co-registered digital surface model (DSM). Of the 33 tiles, 16 are fully annotated and
used for training, while the remaining 17 are held out for testing. Every pixel in the labelled tiles is
classified into one of six land-cover categories: impervious surface (roads/concrete), building, low
vegetation, tree, car, or clutter (undefined/background).

The ISPRS Potsdam benchmark covers a 3.42 km? urban area subdivided into 38 equal-sized tiles
[26]. Each tile is 6000%x6000 pixels at 5cm resolution. Every tile includes a four-band true
orthophoto (near-infrared, red, green, and blue) and a co-registered one-band DSM, all on the same
UTM/WGS84 grid. The orthophotos are provided in multiple channel combinations (e.g., IRRG,
RGB, or 4-channel RGBIR) for convenience. A normalized DSM (nDSM) is also supplied,
generated by ground filtering the DSM. This height-above-ground product was created
automatically (without manual quality control) and may contain some errors. Ground truth labels
(available for 24 of the 38 tiles) use the same six classes as Vaihingen: impervious surface, building,
low vegetation, tree, car, and clutter. (The remaining 14 tiles are used as held-out test data in the
standard benchmark.)

The GID dataset is based on Gaofen-2 (GF-2) satellite imagery and covers large extents [27]. It
comprises 150 high-resolution images (each 7200x6800 pixels) captured by GF-2, with a spatial
resolution of about 0.8 m. Each image spans roughly 506 km? and contains four spectral bands
(blue, green, red, and near-infrared). GID is divided into two parts: the GID-5 large-scale set and the
GID-15 fine-grained set. In GID-5, each full-scene image is annotated at the pixel level with one of
five broad land-cover classes (built-up, farmland, forest, meadow, or water). The dataset is split into
120 training images and 30 validation images. (The GID-15 subset further subdivides these into 15
more detailed classes, but we focus here on the five-class configuration.)

The WHDLD dataset consists of 4,940 small urban image chips over Wuhan, China [28]. These are
RGB images of size 256x256 pixels with 2 m ground resolution, collected from Gaofen-1 and ZY-3
satellites. Each pixel is labeled into one of six categories: building, road, sidewalk, vegetation, bare
soil (bare land), or water. This densely annotated urban dataset is used for semantic segmentation of
city scenes.

The DeepGlobe Land Cover dataset provides very-high-resolution satellite imagery (0.5 m GSD) for
global land-cover classification [29]. It contains 1,146 RGB images, each of size 2448x2448 pixels.
Every pixel mask is annotated with one of seven land-cover classes: urban land, agriculture,
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rangeland, forest, water, barren land, or unknown. (In common usage, 803 of these images have
labels for training and validation, while the rest form an unlabeled test set.)

4.1.6. GF-2

This dataset uses imagery from the Chinese Gaofen-2 (GF-2) satellite at 0.8 m resolution. Each
image is 2000x2000 pixels. The raw GF-2 data are first pre-processed (for example, using ENVI
software) to correct and mosaic the imagery. Ground truth labels are then created manually, often
using MATLAB to paint different colors onto the images to indicate land-cover types. The specific
classes depend on the study, but the annotation approach emphasizes diverse land-cover types

distinguished by color.
e Tl

impervious surfaces [l building I trec impervious surfaces [l building B tree
low vegetation car I clutter low vegetation car I clutter

A ISPRS Vaihingen B ISPRS Potsdam

pavement Y
road
I vegetation

W water

[ built-upll farmland [iforest  meadow [l water
D GID

Figure 3. Visualization of the four common datasets [1]

Table 2. Comparison of different methods on ISPRS Potsdam and Vaihingen datasets

Models / ISPRS Potsdam ISPRS Vaihingen
Methods mF1 (%) MIoU (%) OA (%)  mFl1 (%) MIoU (%) OA (%)
U-Net 84.08 72.10 87.05 - - -
U-Net++ - 72.36 88.23 - - -
ResUNet-a 92.9 - 91.5 - - -
HCANet 88.07 - 88.92 88.94 - 89.71
CM-UNet 90.4 87.41 - 90.22 88.12 -
Incremental Learning - - 84.25 - - 87.44

4.2. Experimental comparison

Among the available benchmark datasets, ISPRS Vaihingen and ISPRS Potsdam are the most used
for evaluating semantic segmentation methods in remote sensing. Table 2 summarizes the
experimental results reported in related studies on these datasets, using mean F1 score (mF1), mean
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Intersection over Union (mloU), and Overall Accuracy (OA) as evaluation metrics. The U-KAN
network is not included because of the lack of benchmark data on those datasets.

It is worth noting that the values cannot be used to compare the actual performance of the model.
The reason for this is that the training set and test size of different models are different during
experiments. However, the results still show us some useful information.

From the table, ResUNet-a performs prominently on Potsdam, with an mF1 of approximately
92.9% and an OA of 91.5%, indicating that its overall segmentation performance is superior to that
of the traditional U-Net (with an mF1 of about 84% and an OA of 87%).

HCANet also achieves high accuracy (approximately 89% OA) on Vaihingen with stable
indicators, demonstrating that its multi-scale scheme based on context fusion is robust in dense
village environments.

CMUNet achieves mF1 scores in the 90-91 % range on both datasets, with Potsdam mloU
reaching 87.41 %, demonstrating a strong ability to distinguish medium- and high-frequency
categories.

An incremental learning approach yields 87.44% OA on Vaihingen, showing promise for class-
incremental adaptation even without intensive retraining.

For model-specific strengths, we can discern the characteristics of these models from the data within
Table 2. ResUNet-a integrates residual connections, alluring convolutions, and a multi-task
structure, which has significantly improved the performance on small targets in Potsdam. HCANet
enhances the ability to distinguish between buildings and vegetation in dense scenes by
hierarchically fusing multi-scale contextual information through the CASPP module. CM-UNet
leverages the channel attention mechanism to optimize the screening of shallow information and
combines sub-pixel fusion to reduce information loss, which is an important reason for its high-
precision performance.

From the aspect of dataset characteristics and model adaptability, Potsdam’s finer spatial
resolution (5 cm GSD) makes it particularly sensitive to small targets like cars and vegetation
textures. ResUNeta and CMUNet excel here, benefiting from multi-scale modules and residual
pathways. Besides, Vaihingen—with 9 cm resolution and a sparser, low-rise village layout—may
favor methods like HCANet that exploit regional context and superpixel-level coherence.

This paper reviews the characteristics of several U-Net variants and their performance on common
remote sensing semantic segmentation datasets from the angle of the DL framework and technology.

Despite the contributions of this study, several methodological limitations remain. In terms of
remote sensing technology, the acquisition methods of remote sensing images were not described in
detail, and only certain characteristics of the datasets were presented. With regard to deep learning,
the technical strategies and architectural optimization methods employed by U-Net variants were not
thoroughly explained or analyzed; rather, only their effects on model performance were discussed.
Moreover, the number of reviewed studies on U-Net variants was relatively limited, and no large-
scale comparative analysis was conducted.

Future work will aim to address these limitations. A more comprehensive investigation of deep
learning techniques and U-Net architectures will be undertaken, with detailed explanations of the
optimization strategies used in different variants. In addition, further study of remote sensing image
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acquisition and classification will allow for a more elaborate description of dataset collection
processes. Most importantly, future research will focus on integrating existing findings to design an
efficient U-Net-based semantic segmentation framework.
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