Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

Stacking Outperforms in Debiased Neural Collaborative
Filtering: A Comparative Study of IPS-Weighted NCF and
Tree-Based Models for Exposure-Biased CTR Prediction

Yuxiao Fang"’, Hanjia Yang’

!Shenzhen Audencia Fintech Institute, Shenzhen University, Shenzhen, China
School of Business, University of Alberta, Edmonton, Canada
*Corresponding Author. Email: fangyuxiao2004@163.com

Recent developments in recommender systems have increasingly employed deep
learning methodologies to confront long-standing challenges, including the modeling of
intricate user—item interactions, the incorporation of temporal dynamics, and the mitigation
of exposure bias. This study reviews and extends insights from four representative
approaches. First, the Convolutional Transformer Neural Collaborative Filtering (CTNCF)
model combines convolutional neural networks with Transformer architectures to capture
both localized and long-range dependencies within user—item representations, thereby
surpassing the performance of conventional Neural Collaborative Filtering (NCF). Second,
the Neural Tensor Factorization (NTF) framework advances classical tensor factorization by
embedding recurrent and multilayer neural components, enabling the representation of time-
varying preferences and nonlinear interactions among latent factors. Third, the Deep Interest
Network (DIN) introduces a local activation mechanism that adaptively models user
interests in click-through rate prediction, effectively overcoming the limitations of fixed-
length embeddings in capturing heterogeneous behavioral patterns; notably, this model has
been deployed at scale in industrial advertising contexts. Finally, recent work addressing de-
exposure bias in NCF incorporates reward signals derived from the LinUCB algorithm into
the neural recommendation process, thereby enhancing both fairness and predictive accuracy
by increasing the visibility of underexposed items. Taken together, these contributions
illustrate the progression of neural recommender systems from static factorization paradigms
toward dynamic, adaptive, and fairness-oriented frameworks, offering both theoretical
contributions and practical value for the design of large-scale recommendation platforms.

Click-Through Rate Prediction, Exposure Bias, Inverse Propensity Scoring,
Neural Collaborative Filtering, Model Stacking, E-commerce Recommendation Systems

Recommender systems have become indispensable to online platforms, supporting personalized
services that enhance both user experience and commercial outcomes. Early collaborative filtering
(CF) approaches, represented by matrix factorization, proved effective in practice but were limited

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

70

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

in capturing nonlinear user—item relationships and were prone to exposure bias. Neural
Collaborative Filtering (NCF) subsequently extended this paradigm by employing deep neural
networks to model complex interactions, which markedly improved recommendation accuracy [1].
Building on this foundation, models such as Neural Tensor Factorization (NTF) and the Deep
Interest Network (DIN) incorporated temporal dynamics and user interest heterogeneity, further
enriching the modeling of user behavior [2,3].

Nevertheless, the problem of exposure bias in implicit feedback remains unresolved. Popular
items tend to dominate recommendation lists, while equally relevant but less-exposed items are
systematically overlooked, reducing both fairness and diversity. Although approaches such as
inverse propensity scoring (IPS) and bandit-based exploration have been developed to alleviate this
imbalance, finding an effective compromise among accuracy, fairness, and stability continues to
present difficulties.

In light of these challenges, this study develops a stacked debiased NCF framework. The design
combines [PS-weighted NCF with CatBoost under a stacking scheme, bringing together the
representational advantages of neural networks and the robustness of tree-based learners. Empirical
analysis shows that this hybrid approach improves predictive accuracy while reducing exposure
bias, thereby offering fairer and more reliable recommendations for large-scale application scenarios

[4].

In recommendation systems, user click behavior tends to be highly sparse and unevenly distributed,
especially at the hourly level or at specific product granularity. On the one hand, traditional deep
learning methods (such as NCF) can capture complex user-product interactions, but when the
sample is sparse or the data is unevenly distributed, it is difficult for the model to accurately estimate
the preferences of certain users or products. On the other hand, click behavior is affected by
conditions such as time, category, and user characteristics, and its probability distribution fluctuates
greatly with time, which may lead to unstable predictions or overfitting of the model if left
untreated.

In order to solve these problems, a variety of statistical and weighted features are introduced into
the model input. Specifically: (1) by constructing multi-granularity CTR (Click-Through Rate)
features to supplement the prior information of the model; (2) IPS (Inverse Propensity Scoring) and
its improved form SNIPS were used to weight the samples to mitigate the exposure bias in the data;
(3) Design a hybrid structure that combines depth model and tree model to give full play to the
complementary advantages of the two in modeling complex interactions and processing category
features.

Next, we will introduce the construction of CTR features, propensity estimation and weighting
methods, and model design and training details.

Click-Through Rate (CTR) is an important prior signal in recommendation systems, but its
empirical distribution often has significant time fluctuations, as shown in Figure 1. If the original
CTR value is directly relied upon, it is easy to cause instability or even distortion in the prediction in
sparse scenarios. To this end, the conditional CTR feature is constructed on the training set as an
auxiliary input for the model to enhance robustness and alleviate data sparsity.

71

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

CTR by Hour

00505
00500
0.0495

3

G 0.0490
00485
00480

0.0475

Figure 1. Change in Click-Through Rate in 24 hours

Specifically, for a condition grouping (such as user-hour, category-hour, or product-hour), a
smoothed CTR is defined as:

clicks g+o
CTRy = periB ey

Among them, clicks represents the number of user clicks, and imps represents the number of ad
impressions. o and B are smoothing coefficients, which are used to balance the deviation and
variance. In the implementation, we choose o=1 and f=3 to provide stable estimation in sparse
scenarios while avoiding overfitting of low-frequency groupings.

In this study, three types of CTR features are constructed:

*User-hour CTR: Describes the user's active preferences at different time periods.

*Category-hour CTR: reflects the time dynamics at the category level,

Item-Hour CTR: Captures short-term click trends for individual products.

When missing groupings appear in the test set, we use global CTR for padding to ensure
consistency and prevent information leakage. By introducing these statistical features, the model can
obtain more reasonable prior information in sparse or highly volatile data environments, thereby
improving the stability and generalization ability of overall prediction.

It is important to note that relying solely on CTR features still does not completely eliminate the
exposure bias inherent in recommendation logs. Therefore, in the subsequent method, we further
introduce a correction mechanism based on propensity estimation and IPS/SNIPS weighting to
improve the unbiased and robust prediction results while ensuring the efficiency of information
utilization.

2.2. Exposure/propensity estimation and sample weighting (IPS/SNIPS/shear)

However, traditional recommendation log data has a strong exposure bias. To counteract this bias,
we used propensity estimation based on historical frequency and used for sample weighting.

2.2.1. Propensity estimation (propensity)

We estimate the conditional exposure probability at coarse-grained context (hour, cate id, pid)
statistical frequencies in the training set:

count(pid, hour, cate))
count(hour, cate) 2)

p (pid |hour, cate) =

72

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

If the conditional probability is missing or very low, the occurrence rate of PID in the global
training set will be used as a regression estimate of the global propensity p(pid). Final predisposition
is defined as:

ﬁi = max (ﬁ(pZdz ‘hO’U/I‘i, catei)7ﬁglobal (p2d1)7 6) (3)
2.2.2. IPS weighting, clipping, and normalization
Propensity-based IPS weights:

ps _ 1
wifs = 2)

To control the variance explosion caused by extreme weights, crop the upper and lower bounds of
the weights (e.g., clip to [0.2, 5.0]) and normalize the weights of all training samples to ensure that
the weight table does not change the overall loss level:

; IPS
clzp(wi sWmin,Wmaz)

w; = : 5
]_{r Zé\le Clzp(wzlps7wmin7wmax) ()

2.2.3. SNIPS (Self-Normalizing IPS)

In NCF training, we use SNIPS-style weighted loss to further reduce variance:

Lnips (0) = s= 32, @i Ufo (1), 1) (6)

Where 1 is based on binary cross-entropy on a sample-by-sample basis. When SNIPS weights are
used directly for PyTorch's dataset, the weighted loss is calculated in w during training (or directly
replacing the sample with equivalent sampling weights).

2.3. Model design and training details

This subsection is divided into three subsections detailing the structure, loss design, optimization,
and probabilistic calibration details of NCF, CatBoost, and Stacking.

2.3.1. Neural Collaborative Filtering (NCF)

Neural Collaborative Filtering (NCF) is a class of recommendation models that integrate deep
learning methods with traditional collaborative filtering techniques [1]. The core idea is to replace
the inner product operation in matrix factorization (MF) with neural networks, thereby capturing
more complex and non-linear user—item interactions [1]. The NCF framework adopted in this study
consists of four main components: the input and embedding layer, the interaction modeling layer, the
fusion layer, and the output layer.

2.3.1.1. Input and embedding layer

The model input consists of unique identifiers (IDs) for users and items. Since the user—item
interaction data is highly sparse, directly using IDs as features is inappropriate. Instead, user IDs and

73

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

item IDs are first mapped into low-dimensional dense vectors through embedding:

u = Embedding (ID,), v = Embedding(ID,) (7

Where and represent the user and item embedding vectors, and u € R% € R? denotes the
embedding dimension.

2.3.1.2. Interaction modeling layer

To capture both linear and non-linear interactions, NCF introduces Generalized Matrix Factorization
(GMF) and Multi-Layer Perceptron (MLP) structures:

GMF Component: Preserves the intuition of traditional MF by modeling linear interactions
through element-wise multiplication of user and item embeddings:

ZogMrF = U QU (8)

MLP Component: Concatenates the user and item embeddings and feeds them into a multi-layer
neural network to capture non-linear relationships:

2yrp = (1 - - d2(d1 ([u]v]))))

where [u | | v] denotes the concatenation operation and ¢; is the non-linear activation function
at the i-th layer.

2.3.1.3. Fusion layer

The outputs of GMF and MLP are then combined to leverage their complementary strengths.
Specifically, the vectors are concatenated and projected into a joint latent space:

z = [zamr||ZmLP] (10)
2.3.1.4. Output layer

The fused vector z is passed through a fully connected layer with a Sigmoid activation function to
generate the predicted probability of user—item interaction:

Yuw = o(hT2) (11)

where enotes the predicted preference score between user u and item v, and o(¢, *) is the
Sigmoid function.

2.3.1.5. Model training
The NCF model is trained by optimizing a cross-entropy loss function:
L = — Z(U,U)ED [yuvlog (Z}uv) + (1 - yuv) log (1 _— qu)} (12)

where yuv is the ground truth label for user—item interaction (1 for interaction, 0 otherwise).
Model parameters are updated via backpropagation using optimization algorithms such as Adam.

74

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

2.3.2. CatBoost (IPS-based tree model)

The main advantage of CatBoost as a Class II baseline model is the built-in processing of category
features and robustness to high cardinality of categories. We also use IPS weights (normalized) as
sample weight in our CatBoost training.

Training process: Build a pool (train X, labels, weights, cat features=cat idx) and use
cb.fit(train_pool, eval set=test pool). Platt scaling (LogisticRegression) is performed after
outputting the probability or using the penultimate day as a more stringent calibration set.

2.3.3. Stacking (meta = CatBoost)

To explore whether model fusion improves performance, we use a simple and commonly used two-
layer stacking architecture:

Level 1: Trained with CatBoost's NCF and output the calibrated predicted probability y"NCEF,
y~CB. Calibration uses Platt scaling: Train a simple logistic regressor on the validation set on the
first-level output, mapping the raw probability to the calibrated probability.

Level 2 (Meta): Use CatBoost as the meta-learner, input as two columns of features [y"NCF,
y*CB], and the training target is the real label. If you want to continue considering the IPS weights
of the Meta layer, CatBoost Meta can also receive sample weights.

The design leverages CatBoost's ability to capture nonlinear relationships and correct first-order
bias to fuse complementary information from two basic learners.

In summary, the effectiveness of debias recommendation is systematically discussed through IPS-
NCF, CatBoost model based on gradient lifting tree, and combined stacking fusion method. These
methods not only mitigate exposure bias in traditional CTR predictions but also offer
complementary advantages in modeling complex nonlinear intersum capture category featuresThe
datasets, preprocessing steps, training/test division methods, and parameter settings used in the
specific experiments are described in detail in Chapter 3 Experimental Design.

3. Experiment

This paper is experimentally verified on the "Taobao Display Click-through Rate Estimation"
(Ali_Display Ad Click) dataset released by AlibabaThis section will explain from four aspects:
dataset and feature construction, time segmentation and training/test division, experiment setup, and
evaluation metrics.

3.1. Dataset and feature construction

The data used in this experiment is a Ali Display Ad Click public dataset, covering the ad
impression and click logs of approximately 1.14 million users over an 8-day period, totaling
approximately 26 million records. Each sample contains the user ID, ad unit ID, timestamp,
placement, and click tag (clk € {0,1}). The data also comes with three types of feature tables: ad
characteristics (ad_feature), user personas (user profile), and user behavior logs (behavior log).
Among them, the advertising characteristics include category, delivery plan, brand and price; User
portraits provide attributes such as gender, age level, consumption level, shopping depth, and
occupation. The user behavior log records the user's browsing, add-on, favorite and purchase
behavior within 22 days.

In order to ensure the quality of modeling, we first carried out strict missing value treatment on
the original data. Specifically:

75

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

1)Delete missing records in key columns (user, adgroup _id, clk) directly;

)If the relevant fields (brand, cms segid, cms group id, final gender code, age level,
pvalue level, shopping level, occupation, new _user class level) are missing, they will also be
deleted.

3)For user behavior features (beh pv, beh cart, beh fav, beh buy, beh total), if there are null
values, fill them with 0.

The code implementation uses chunk processing (chunksize=5,000,000) to clean it block by
block to avoid memory overflow. For example:

chunk.dropna(subset=key columns, inplace=True)

chunk.dropna(subset=user profile cols, inplace=True)

chunk[behavior cols] = chunk[behavior cols].fillna(0)

After processing, the original 26 million samples were reduced to approximately 7,003,565, and
this data was used as the final modeling sample.

3.1.1. Temporal feature construction and data division

We convert timestamps to date and hour fields and further construct periodic time features (such as
hour_sin, hour cos, weekday sin, weekday cos) to capture the periodic patterns of user behavior. In
terms of dataset division, the chronological order is followed: the first 7 days are used as the training
set, and the 8th day is used as the test set to match the causal logic of the actual recommended
scenarios.

3.1.2. Category feature coding and cross-features

In the feature engineering process, the LabelEncoder encoding of high-cardinality category features
such as users, advertisements, categories, and delivery plans is first performed for subsequent model
processing.

In the construction process of category crossover features, we combine statistical indicators to
screen candidate features, rather than relying solely on human experience. Specifically, we
calculated the following two metrics:

CTR_diff: Used to measure the ability of a feature to distinguish click behavior. It is defined as
the difference between the maximum and minimum values of the click-through rate under different
values of the feature, that is

CTR4iff = max (CTR,) — min(CTRy) (13)

It can be seen that the larger the CTR_diff, the stronger the ability of the feature to distinguish the
click behavior under different values.

high freq count: Used to measure the coverage of the feature in the training set, that is, the sum
of the number of groups with the number of occurrences above a certain threshold for each value
group. This metric is used to control sparsity, ensuring that the model does not produce erratic
predictions due to rare values.

By calculating CTR diff and high freq count, we can take into account both feature
discrimination ability and sample distribution stability, which is an important basis for screening
cross-features.

After sorting a total of 238 feature combinations in the dataset according to the above two
numerical sizes (if the CTR_diff difference between the two features is < 0.01, they are considered

76

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

to be CTR_diff similar, and then the high freq count are compared to determine the priority; If the
CTR _diff difference > 0.01, the CTR diff larger trait is preferred), and some user attributes X

brand/category combination traits (e.g., brand shopping level bin,
brand new user class level bin) are in the top 30, showing high CTR differentiation ability. Other
candidate crossover features (e.g., brand age level bin, brand occupation_bin,

cate_id final gender code bin, cate id hour cos bin, cate id weekday sin _bin) are not in the
Top 30, but they still have some CTR differentiation within the Rank 30-60 range , and is stably
distributed in the sample, which can provide complementary information for the model.

These characteristics also make sense logically for business:

*User attributes x Brand/category: Reflects the differences in product preferences of different
user groups;

*Time characteristics x categories: Reflects click behavior patterns in different categories over
different time periods.

Table 1 lists the final selected crossover features and their ranking in the CTR_diff ranking, so
that readers can intuitively understand the basis and decision logic of our feature selection.

Table 1. Selected crossover features and their indicators

Feature Name CTR_diff high freq count Rank

brand X age level 0.2963 23060 55
brand x occupation 0.3974 7071 28
brand x shopping_level 0.3974 6174 29
brand x new_user class_level 0.4310 12919 15
cate id X final gender code 0.2941 4301 56
cate_id X hour_cos 0.3218 39317 48
cate_id x weekday_sin 0.3692 21170 32

3.1.3. Statistical characteristics of CTR

Finally, we designed the CTR statistical features. The three dimensions of user-hour, category-hour,
and placement-hour are aggregated on the training set, the smoothed click-through rate is calculated,
and the results are mapped to the test set. For example, the user-hour CTR is constructed as follows:

g = train_df.groupby(['user','hour'])['clk'].agg(['sum','count']).reset index()

g['user hour ctr'] = (g['sum'] + 1.0) / (g['count'] + 3.0)

train_df = train_df.merge(g[['user','hour','user _hour ctr']], on=['user’,'hour'], how="left")

This method provides additional statistical prior information to the model while alleviating the
sparseness problem.

3.2. Time partitioning and training/test division

In order to ensure the causal consistency and controllability of the experimental results, we adopt a
strict time series partitioning strategy: the first 7 days of the dataset are selected as the training set,
and the 8th day is used as the test set. This division method avoids future information leakage and is
closer to the online application scenarios of actual recommendation systems.

77

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

Time Splitting and
Train/Test Split

Train Data
Days 1-7

Validation Data Test Data
~10 % of Train Day 8

Platt scaling,

early stopping

Figure 2. Visualizes training/validation/testing partition process
3.3. Experimental setup

During the model training process, we uniformly set random seeds (42) to ensure reproducibility,
and the optimizer uses AdamW and performs early stop monitoring on the training set to reduce the
risk of overfitting. The following describes the implementation and parameter configuration of the
three types of models.

3.3.1. IPS-NCF model

This model is based on the PyTorch implementation. First, we map users, advertisements, and cross-
features into dense vectors through embedding layers, and then stitch them with continuous features
such as time and behavior statistics and input them into multilayer perceptrons (MLPs). Introducing
Inverse Propency Score (IPS) weighted binary cross-entropy loss during model training, combined
with SNIPS and double robust estimation (DR), to mitigate data bias. The key parameters are
configured as follows:

Table 2. Parameter configuration of IPS-NCF model

Parameter Description
MLP structure 256-128-64-32,activation function: ReLU
Dropout 0.2-0.3
Optimizer AdamW (Learning Rate 1x1073, Weight Decay 1x107¢)
Learning rate scheduling OneCycleLR(cosine annealing,pct_start=0.1)
Batch size 8192
Maximum iteration 8 rounds, early stop patience=3
Gradient clipping threshold 5.0
Embedded dimensions 64

These settings are relatively stable in the early parameter adjustment. 64-dimensional
embeddings strike a balance between computational overhead and expressive power, and four-layer
MLP effectively captures higher-order nonlinear features. Dropout and weight decay further reduce
the risk of overfitting, while the IPS combined with SNIPS+DR strategy ensures that the model has
stronger generalization in data environments with selection bias.

78

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

3.3.2. CatBoost model

CatBoost directly leverages its native support for class features, avoiding the manual coding process
and demonstrating good stability and efficiency in CTR prediction tasks. The key parameters are
configured as follows:

Table 3. CatBoost model parameter configuration

Parameter Description
Tree depth 8
Learning rate 0.05
Maximum number of iterations 3000
Early stop mechanism If there is no improvement within 50 rounds of the validation set, it will stop
Loss function Logloss

The selection of parameters also comes from the pre-experimental results. The deep tree structure
(depth=8) ensures sufficient expression ability, while the moderate learning rate and early stop
strategy effectively prevent overfitting. 3000 iterations guarantee that the model achieves
convergence while avoiding overtraining.

3.3.3. Stack the fusion model

In the fusion phase, we adopt a stacking strategy. The primary learner consists of IPS-NCF and
CatBoost, and the output of the two is calibrated by probabilistic calibration (Platt scaling) and used
as input features to train lightweight secondary models. The key parameters are configured as
follows:

Table 4. Parameter configuration of stacked fusion model

Parameter Description
Secondary model CatBoostClassifier
Tree depth 6
Learning rate 0.05
Maximum number of iterations 2000
Early stop mechanism 50 rounds

CatBoost was chosen as the secondary model due to its robustness and fast convergence speed for
small-scale high-dimensional inputs. The lightweight configuration allows it to efficiently integrate
prediction information from the first-level learner, thereby further improving the overall prediction
accuracy and stability.

3.4. Evaluation indicators

To comprehensively measure recommendation performance, the following metrics are employed:
AUC (Area Under ROC Curve): Measures the model's ability to distinguish between clicked and
non-clicked samples and is the primary evaluation metric.

79

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

AUC = ﬁ ZilinI Zi:yi:O 1('f (wl) - f(:II])) (o

LoglLoss: Measures the gap between the predicted probability and the true label;
LogLoss = —1—{, Zfil[yilog]/)\i + (1 — yi>10g<1 - ﬁz)} (15)

Gini Coefficient (Gini): Measures the model's ranking consistency and is a complementary metric
to AUC. It is related to AUC by the formula Gini=2xAUC-1, reflecting how well the model
separates positive and negative samples.

Gini =2 i Liyor Do Lf (i) > f(a)) —1 (16)

Where N+ and N— are the numbers of positive (clicked) and negative (non-clicked) samples,
respectively, and f(x) is the predicted score for sample xxx.

Lift @ K% (Lift@K%): Measures the improvement of the model in identifying positive samples
within the top K% of predicted scores compared to random selection. It reflects the business impact
of the recommendation system, e.g., how many more clicks can be captured by showing the top K%
recommended items.

1
. _ CTRof top K% ranked samples __ TSg] 2 esyc Vi
szt@K% - CTR of all samples - Tir Zfil yi (17)

Where Sk is the set of samples in the top K% by predicted score, y; is the true label (1 for
click, 0 for no click), and N is the total number of samples.

In summary, this study takes into account both robustness and rationality in data processing and
experimental settings. The independence of training and testing is ensured through time
segmentation, and feature engineering includes both basic behavioral and temporal features, as well
as cross-feature and CTR statistics to improve expressiveness. At the model level, we set up three
types of methods: IPS-NCF, CatBoost and stacked fusion, and took into account the theoretical basis
and pre-experimental performance in the parameter selection. This design not only lays a solid
foundation for subsequent experimental analysis, but also ensures the fairness and credibility of the
comparison results.

To further understand the source of the performance of each model, we first analyzed the loss and
sequencing power trends of NCF and IPS-NCF during training (Figure 3). Overall, the training and
test losses of NCF gradually decreased with training iteration, and the model convergence was stable
and there was no obvious overfitting. After the introduction of IPS weighting, IPS-NCF converged
faster in the initial training stage and ultimately had lower test losses, indicating that the weighted
sample strategy improved the sensitivity of the model to low-exposure samples and made the
prediction more robber.

80

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

Train Loss Comparison Test Loss Comparison Test AUC Comparison

— NeF — NCF
SNIPS-NCF 12 SNIPS-NCF 0.600
0575
e 0.550
@
208 0525

® 0.500
06

0475

Test AUC

Irain Loss
o r N w & w o

0.450 ' ——r7o
SNIPS-NCF
02 0425

3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000
Iteration Iteration Iteration

Figure 3. The trend of key indicators in the training process of NCF and IPS+NCF models

In terms of the sorting ability of the test set, the AUC of NCF gradually increases with training,
while the AUC of IPS-NCF is always higher than that of NCF, indicating that IPS weight improves
exposure bias and enhances the ranking ability of the model. Although the test loss may fluctuate
slightly in the intermediate training phase, the final convergence trend is good, and the AUC is
stable at a high level, indicating that the weighting strategy does not affect the overall training
stability while improving the discriminatory ability of low-exposure samples.

The final performance of the four types of models is further compared on the test set:

Table 5. Indicators of different models on the test set

Model AUC Logarithmic loss Gini Lift@10% Lift@20%

NCF 0.592753 0.213400 0.18551 1.46592 1.35972
IPS-NCF 0.613983 0.201376 0.22797 1.81319 1.61385
CatBoost 0.634028 0.188651 0.26806 1.98198 1.73952
Stacking 0.648719 0.186923 0.29744 2.13098 1.81756

From the results, the AUC of CatBoost (0.63403) is significantly higher than that of the NCF
alone (0.59275), while Stacking further reaches 0.64872, indicating that the fusion model has a
significant advantage in sorting ability (the higher the AUC, the better the model can distinguish
between positive and negative samples, and the better the sorting effect). The introduction of IPS-
weighted NCF (IPS-NCF) increased the AUC to 0.61398, indicating that weighting can partially
improve the under-sorting caused by sample exposure bias.

In terms of probability quality index (LogLoss), the original LoglLoss of NCF is 0.21340,
reflecting that there is a certain deviation in probability estimation. After IPS-NCF, LogLoss was
reduced to 0.20138, showing that the weighting improved the model's sensitivity to low-exposure
samples and improved the average probability error to a certain extent, but still inferior to CatBoost
(0.18865). Stacking finally achieved the lowest LogLoss (0.18692), indicating that its probabilistic
prediction stability and reliability were the best (LogLoss). smaller means that the predicted
probability is closer to the true probability distribution). This conclusion is echoed in the Gini
coefficient: Stacking's Gini is 0.29744, which is higher than CatBoost's 0.26806 and IPS-NCF's
0.22797 (Gini = 2*AUC-1, which is essentially a supplementary quantitative measure of rank
consistency).

From a business perspective, the Top-K indicators (Lift@10%, Lift@20%) show the same trend:
CatBoost Lift@10% is 1.98198, Stacking is up to 2.13098, and Lift@20% is up from 1.73952 to
1.81756. This means that in scenarios with limited referral slots or limited resources (such as a few
referral slots in front of the homepage or a promotional push list), the Stacking model can reach
more real clicks or converting users with the same push volume than a single CatBoost, which has
direct business value (top-10% coverage efficiency improvement of about 7%).

81

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

Combining the probability distribution in Figure 4 and Figure 5 can be further combined to
explain these numerical differences more intuitively. Figure 4 (NCF) shows that the distribution of
the NCF raw output (blue dotted line) is more scattered, with a relatively high probability long tail
in the right tail (i.e., the model over-confidence on some samples), which amplifies Logloss
(because the high probability prediction penalty is heavier for a small number of errors); After
Platt/Logistic calibration (solid orange line), the distribution is significantly contracted to the left
and more concentrated, indicating that the calibration reduces the high probability of overconfidence
and brings the predicted probability closer to the true frequency, resulting in improved LogLoss, but
limited effect on the relative order (ordering), so the AUC does not change much.

Probability Distribution (NCF)

25 ——- NCF Raw
NCF Calibrated

0.0 0.1 0.2 03 0.4 05 0.6
Predicted Probability

Figure 4. Probability distribution (NCF)

Figure 4.2 (CatBoost) shows that the original probability distribution of the tree model is
relatively concentrated and smooth, and the difference before and after calibration is small,
indicating that CatBoost has generated robust probability estimation through leaf-end frequency or
regularization mechanism during training, so it naturally has an advantage in LogLoss.

Probability Distribution (CatBoost)

--- CatBoost Raw
20 CatBoost Calibrated

0.0 0.1 0.2 03
Predicted Probability

Figure 5. Probability distribution (CatBoost)

Comparing the two graphs, NCF is better at providing "strong relative scoring signals" (high
variance but high information), while CatBoost provides "robust and low-variance probability
estimation"; The improvement in stacking comes from the dynamic weighting of the output of the
meta-learner: more trust in NCF's discriminant signals in some user/product/time windows
(increased AUC), and more reliance on CatBoost's robust probability in other cases (reduced
LogLoss), and the two complement each other to form a comprehensive advantage.

In general, this experiment reveals the following laws: firstly, the depth model is prone to the
problem of excessive probability concentration when not calibrated, and the probability output can
be effectively improved through calibration and IPS weight adjustment. Secondly, the tree model
has natural advantages in classification and statistical feature modeling, and the improvement space
for probability output is relatively limited. Finally, the stacked fusion strategy can give full play to

82

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD29993

the complementarity of different models and achieve comprehensive optimal results in terms of
sorting performance and reliability of probability output.

This study focuses on the exposure bias problem in click-through rate prediction and proposes a
stacked, debiased NCF model. The research addresses three aspects: first, by constructing
spatiotemporal statistical features and cross features, it effectively mitigates the challenges posed by
data sparsity and dynamic variations; second, by incorporating inverse propensity weighting
(IPS/SNIPS), it significantly reduces the bias caused by uneven historical exposure distributions
during training; finally, by combining CatBoost with NCF in a stacking framework, the model
captures high-order nonlinear interactions while maintaining the robustness and interpretability of
tree-based models. Experimental results show that using NCF or CatBoost alone improves
predictive performance but has inherent limitations; IPS weighting enhances both prediction
accuracy for low-exposure samples and ranking performance (AUC); the stacked model achieves the
best results in AUC, LogLoss, and business-related Top-K coverage metrics, covering more real
clicks and conversions in limited recommendation slots or resource-constrained scenarios,
demonstrating clear practical value. These findings indicate that the deep interaction features
captured by NCF complement the robust probability estimates of CatBoost, and the stacking model
dynamically integrates both strengths through a meta-learner, achieving overall improvements in
ranking, probability reliability, and business efficiency, providing an effective solution for debiased
recommendation tasks.

Based on these results, this study has direct practical significance. In e-commerce advertising and
large-scale personalized recommendation systems, the stacked debiased model can improve click
and conversion efficiency, enhance user experience, and strengthen platform competitiveness. It also
offers an actionable approach to mitigating historical exposure bias, contributing to fairness and
stability in recommendation systems, and providing theoretical and practical support for decision-
making in high-traffic, complex scenarios. Building on this foundation, future work will further
extend the model’s applicability and robustness. Specifically, incorporating multimodal inputs (e.g.,
text and images), exploring more robust debiasing strategies based on causal inference or adversarial
training, enhancing interpretability and fairness, and developing online or incremental learning
mechanisms for real-time recommendation scenarios can further improve predictive performance
and recommendation fairness. These enhancements will provide more comprehensive and
deployable solutions for complex, high-volume recommendation systems, further increasing the
practical value of this research.

[1] Li, P, Noah, S. A. M., & Sarim, H. M. (2022). Convolutional Transformer Neural Collaborative Filtering. National
University of Malaysia.

[2] Wu, X, Shi, B., Dong, Y., Huang, C., & Chawla, N. V. (2018). Neural Tensor Factorization. Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18). https:
//doi.org/10.1145/annnnnn.nnnnnnn

[3] Zhou, G., Song, C., Zhu, X., Fan, Y., Zhu, H., Ma, X_, Yan, Y., Jin, J., Li, H., & Gai, K. (2018). Deep Interest
Network for Click-Through Rate Prediction. Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD’18). https: //github.com/zhougr1993/DeeplnterestNetwork

[4] Li, P, Li, X., & Zhu, X. (2025). Neural Collaborative Filtering Recommendation Model for De-Exposure Bias
Based on Fused Rewards. Application Research of Computers, 42(1), 78-85. https: //doi.org/10.19734/j.issn.1001-
3695.2024.05.0184

83

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms

Appendix - feature description

DOI: 10.54254/2755-2721/2025.LD29993

Feature Name

Description
user User ID (anonymized)
time_stamp Timestamp
adgroup _id Anonymized advertising unit ID
pid Resource position ID
nonclk Non-click indicator (1 = not clicked, 0 = clicked)
clk Click indicator (1 = clicked, 0 = not clicked)
cate id

campaign _id
customer
brand
price
cms_segid
cms_group_id
final gender code
age level
pvalue_level
shopping_level
occupation
new_user class_level
beh pv
beh cart
beh_fav
beh buy
beh_total
hour
weekday
hour_sin
hour cos
weekday sin

weekday cos

Anonymized product category ID
Anonymized advertising campaign ID
Anonymized advertiser ID
Product brand
Product price
Micro-segment ID
CMS group ID
Gender (1 = male, 2 = female)

Age group
Consumption level (1 = low, 2 = medium, 3 = high)
Shopping depth (1 = shallow, 2 = medium, 3 = deep)
Student status (1 = university student, 0 = not)
City tier
Number of page views
Number of add-to-cart actions
Number of favorites
Number of purchases
Total number of behaviors
Hour of the day
Day of the week (0—6)

Sine transformation of hour feature
Cosine transformation of hour feature

Sine transformation of weekday feature

Cosine transformation of weekday feature

84

