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Abstract.  Deep learning (DL) is a key branch of artificial intelligence (AI). It has made
remarkable progress in medical imaging, particularly in image classification and pattern
recognition. In ophthalmology, the application of DLto fundus images for glaucoma
assessment has become a rapidly developing research area. In recent years, this approach has
represented promising results in terms of both analytical efficiency and accuracy, assisting in
the differentiation of glaucoma patients from healthy eyes. This trend suggests that DL
technology has the potential to improve existing diagnostic and treatment practices and
optimize the clinical workflow for glaucoma diagnosis. However, challenges remain, such as
a shortage of high-quality annotated data and limited model interpretability. This article
reviews recent research progress on DL-based glaucoma assessment using fundus images,
explores its potential clinical significance, and proposes future research directions. Through
a systematic review of relevant literature, this study provides a comprehensive
understanding of the application of DL in glaucoma diagnosis for both academia and clinical
practice, and offers reference and guidance for future research.
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1.  Introduction

As the leading cause of irreversible blindness globally, glaucoma is often associated with elevated
intraocular pressure (IOP). It is marked by injury to the optic nerve head (ONH) and retinal nerve
fiber layer (RNFL), resulting in peripheral and, at times, central vision loss [1, 2]. The cup-to-disc
ratio in patients with glaucoma is often smaller than that in healthy individuals, and the RNFL is
thinner [2].

Artificial intelligence (AI) has been widely applied in medical image examination these days.
Through studies, it is shown that various AI methods can reach high specificity and sensitivity in
glaucoma detection, whether applied to structural modalities like optical coherence tomography
(OCT) and fundus photography (FP) or to functional modalities like visual field (VF) testing. AI
algorithms fall into two distinct categories: conventional machine learning (ML) algorithms and
deep learning (DL) [3-5]. The challenge with conventional ML lies in selecting which features are
critical within each image. Given the substantial differences in the shape and size of pathological
manifestations among individuals, extracting features proves to be a challenging task. Conventional
ML also exhibits limited generalization capabilities. In contrast, DL employs an end-to-end learning
process that takes labeled datasets as input and produces classifications as output. Multi-layer



Proceedings	of	CONF-MLA	2025	Symposium:	Intelligent	Systems	and	Automation:	AI	Models,	IoT,	and	Robotic	Algorithms
DOI:	10.54254/2755-2721/2025.LD30009

52

nonlinear information processing is employed by DL models for the purposes of feature extraction,
transformation, pattern analysis, and classification. Consequently, these models possess the
advantage of automatically identifying relevant patterns within images, rather than requiring domain
experts to manually craft optimal features. Theoretically, through automatic feature learning and
large-scale modeling capabilities, DL can achieve superior generalization performance when trained
on diverse datasets.

2.  Global image methods

This approach takes the entire fundus image as input to the model for training and inference. The
model automatically learns discriminative features from the global image without relying on prior
anatomical structure information. Its advantages include a simplified preprocessing pipeline and
reduced deployment overhead; however, the features extracted by the model often suffer from
limited clinical interpretability.

Raghavendra et al. developed an 18-layer convolutional model that demonstrated high
classification ability while eliminating the need for handcrafted feature extraction or additional
preprocessing, as it directly processed raw images. Using a dataset from Kasturba Medical College
(Manipur, India), the model achieved a mean accuracy of 95.60%, with sensitivity, specificity, and
positive predictive value of 95.50%, 95.10%, and 96.96%, respectively [6].

Existing DL models has the “black box” nature, a factor contributing to a decline in physician
trust. Deperlioglu et al. introduced an approach that incorporates image processing and DL ,
enhanced with explainable artificial intelligence (XAI). This approach aims to guarantee the
credibility of decisions made during AI-based glaucoma diagnosis. Image processing techniques,
including Histogram Equalization (HE) and Contrast-Limited Adaptive Histogram Equalization
(CLAHE), were applied to enhance color fundus image data. To facilitate diagnosis, the enhanced
image data was entered into an explainable CNN. The achievement of XAI required the
implementation of Category Activation Maps (CAM), which facilitates the interpretation of the
CNN’s image analysis through heatmap-based methods. A comparative analysis was conducted on
the Drishti-GS, ORIGA-Light, and HRF datasets. The results indicated that ORIGA-Light exhibited
optimal performance, with an average accuracy of 93.5% and a sensitivity of 97.7%. A group of
fifteen physicians evaluated the effectiveness of the XAI, and their findings indicated high rates of
concordance between conventional and AI-based methods. This enhancement in physician
confidence provides a reliable solution for automated glaucoma diagnosis [7].

3.  Structure-based methods

The core concept of this approach is to focus on anatomical structures about glaucoma and
subsequently make diagnoses based on these structures. Common strategies covers two main aspects
(1) segmenting the optic disc and optic cup to calculate a structural metric, namely the cup-to-disc
ratio (2) estimating the retinal nerve fiber layer thickness (RNFT) from fundus images These
methods more directly reflect the pathological characteristics of the disease and generally yield more
interpretable results. However, algorithms that estimate RNFLT typically require a substantial
amount of Spectral-Domain Optical Coherence Tomography (SD-OCT) data during the training
stage.
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3.1.  Model based on cup-to-disc ratio

The cup-to-disc ratio is a significant metric that can be readily assessed from FPs. Nowadays,
numerous DL algorithms have been developed using regions of interest (ROIs) centered on the optic
disc, mainly for capturing this crucial structure, the cup-to-disc ratio.

3.1.1.  Coarse-crop-based model

Coarse crop–based models crop a region centered on the optic disc that coarsely encompasses the
target structure. Chen et al. have proposed a six-layer convolutional DL model. Utilizing the ORIGA
and SCES datasets, they incorporated data-augmented ROI images as input to the proposed deep
CNN, thereby achieving a substantial reduction in processing time compared to segmentation discs
and cups. The dropout method was implemented during the training process, and the final softmax
classifier yielded area under the curve (AUC) values of 0.831 and 0.887 on two test datasets [8].

Transfer learning has shown advantages in diagnosing diabetic eye disease. As part of their study,
Mark Christopher and his fellow researchers examined the effectiveness of various DL architectures
and transfer learning for detecting glaucomatous optic neuropathy (GON) and FPs. The evaluation
process involved the analysis of three classical CNN architectures: VGG16, Inception v3, and
ResNet50. Each architecture was assessed in both “native training” and “transfer learning” versions.
The inputs comprised “cropped and normalized ONH region images.” The results demonstrated that
transfer learning versions exhibited a substantial enhancement in performance when compared to
native versions across all architectures [9].

Naoto Shibata et al. employed CFPs captured at KOWANonmyd WX Matsue Red Cross Hospital
as the dataset, with test data sourced from the medical faculties of the University of Tokyo and
Kitasato University. The Hofstede transformation was employed for cropping, and data
augmentation was applied to the optic disc region as input to train ResNet 18. This approach
resulted in an AUC of 0.965 across all test data [10].

Using medical images and deep learning to diagnose diseases often faces challenges of
insufficient samples or inadequate labeling. However, semi-supervised and weakly supervised
learning can uncover patterns within limited data. Zhao et al. proposed a weakly supervised multi-
task learning (WSMT) framework that can perform three tasks simultaneously: glaucoma diagnosis
based on ODH line patterns, evidence identification, and optic disc segmentation. This framework
uses only binary classification labels. This framework comprises four components: (1) a novel CNN
with skip connections and dense blocks that automatically captures multi-scale feature
representations, (2) a pyramid ensemble architecture that learns high-resolution evidence maps
solely from diagnostic labels through multi-layer global pooling and activation pyramid mapping,
which enables evidence identification and segmentation, (3) a deep neural network named the
Constrained Clustering Branch (CCB) that segments the optic disc, and (4) a fully connected
discriminator that automates glaucoma diagnosis. The proposed framework is a tree-like network
architecture that uses three branches to perform the tasks of evidence identification, glaucoma
diagnosis, and optic disc segmentation while sharing feature representations constructed by the CNN
backbone. This architecture achieves higher-level diagnostic tasks guiding lower-level
localization/segmentation tasks [11].
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3.1.2.  Model based on precise segmentation

Models based on precise segmentation segment the optic disc and optic cup regions, and then use
the resulting masks either to extract structural features or to train subsequent diagnostic models [12].

Chen et al. proposed a neural network convolutional model named C-CNN and trained it on the
ORIGA and SCES datasets. The researchers employed peripapillary atrophy (PPA) removal and
elliptical fitting segmentation to obtain a clean optic disc (OD) region. The model is composed of
six layers, including five multi-layer perceptron (MLP) layers, convolutional layers and one fully
connected layer. It incorporates response normalization and overlapping pooling layers to mitigate
the risk of overfitting. The innovation in the MLPconv layers involves the replacement of traditional
CNN linear filters with an MLP, in conjunction with the employment of ReLU activation to achieve
complex nonlinear transformations. This enhancement in data capture facilitates the detection of
hidden pathological patterns in the fundus. C-CNN employs a context-based training strategy,
diverging from conventional independent CNN training. For instance, the 5 C-CNN model consists
of five CNNs concatenated in series, where the convolutional layer output from the preceding CNN
serves as contextual input to the fully connected layer of the subsequent CNN. The discriminative
power of features is enhanced by the final glaucoma prediction generated through the softmax
classifier in the last CNN layer. The findings of the study indicate that the 5-C-CNN model
demonstrates the optimal performance across the datasets, with an average AUC of 0.833 on
ORIGA and 0.890 on SCES [13].

Chai et al. developed a fully automated multi-branch neural network (MB-NN). The dataset has
fundus images from different machines at Beijing Tongren Hospital. The network extracts global
and ROI - specific local features simultaneously. The first branch uses a CNN to extract features
from the whole image. Faster - RCNN was used to outline the optic disc region for the second
branch's input. Subsequently, CNNs were employed to extract locally significant features. For the
third branch, a fully convolutional network (FCN) model was employed to perform segmentation of
the optic disc, cup, and PPA regions, followed by metric calculation [14].

3.2.  Model based on RNFLT

RNFLT is another important biomarker for glaucoma diagnosis in ML studies, showing high AUC
values with low standard error [15]. It can be measured using SD-OCT. However, although OCT is
broadly viewed as the benchmark in ophthalmology, its high cost restricts its availability mainly to
large ophthalmic centers and research laboratories. Some DL algorithms focus on how to measure it
using FPs. Medeiros et al developed and validated a DL algorithm trained on SD-OCT data to
quantitatively assess optic nerve damage from FPs. The dataset comprised 32,820 paired optic disc
photographs and SD-OCT RNFL scans from 1,198 subjects (2,312 eyes), with 80% allocated for
training and validation and 20% reserved for testing. Using SD-OCT–derived mean RNFLT as the
reference standard, the model was constructed based on the ResNet-34 architecture. Training
incorporated image preprocessing and data augmentation, and heatmaps were employed to identify
salient regions. The results exhibited a strong correlation between model-predicted RNFLT and
actual measurements, with a mean absolute error (MAE) of 7.39 µm. During differentiating
glaucoma from healthy eyes, the model attained an AUC of 0.944—on par with SD-OCT—boasting
a classification accuracy of 83.7%. This approach mitigates the limitations of manual annotation and
provides a low-cost solution for glaucoma screening, although approximately 30% of the
measurement variance remained unexplained [16].
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4.  Conclusions

Although DL algorithms show considerable promise for diagnosing glaucoma through fundus
photography, several limitations remain in the current literature. First, data-related issues remain,
such as dataset heterogeneity, class imbalance, and limited labeling. These weaken generalizability.
Second, most models lack sufficient explainability. DL algorithms often operate as “black boxes”.
Although with the aid of explainable AI frameworks, their clinical interpretability remains limited.
Third, clinical adaptability requires further improvement. Models trained on retrospective data
perform poorly when facing variations in image quality, patient populations, and comorbidities.
Finally, cross-modality prediction of RNFLT remains a challenge. Thickness estimation from fundus
images continues to exhibit high variance, reflecting the difficulty of capturing complex
pathological mechanisms.

Looking ahead, future research should prioritize the development of large, diverse, and well-
annotated multi-center datasets to enhance generalizability. Integrating multimodal data from OCT,
fundus photography, and visual field testing, could improve diagnostic accuracy by capturing both
structural and functional aspects of glaucoma. Advances in semi-supervised, weakly supervised, and
federated learning hold promise for overcoming limitations of data scarcity and privacy concerns.
Additionally, explainable AI frameworks and physician-in-the-loop systems will be crucial for
fostering clinical trust and facilitating real-world translation. Ultimately, the future direction lies in
building robust, interpretable, and clinically deployable AI systems that can support early detection,
monitoring, and personalized management of glaucoma on a global scale.
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