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Abstract. This paper discusses the problem of local path planning for autonomous vehicles. This 

article introduces pruning strategies and their related map construction and data processing. Next, 

a forward path planning strategy was introduced, and a universally applicable path selection 

method was provided. The value of forward prediction strategy for autonomous driving 

technology was demonstrated by comparing it with ordinary mobile robot path planning 

algorithms. Then, the optimization of the forward paths through a pruning strategy reduced the 

time required for updating data by the algorithm introduced in the article. This article refers to 

the data provided in two literatures, compares and analyzes the advantages and disadvantages of 

two path planning schemes, and attempts to combine some of their advantages. At the end of this 

article, the calculation results based on MATLAB mathematical modeling are provided, and the 

rationality analysis of this path planning strategy is provided as well. Based on these analyses, 

this article provides suggestions for optimizing path planning algorithms. 
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1.  Introduction 

Nowadays, autonomous navigation is becoming more and more mature. Undoubtedly route planning 

and speed planning for vehicles' driving paths are one of the most important parts of autonomous 

navigation technology [1][2]. For the development of this technology, these five aspects are important, 

namely, information processing efficiency, environmental adaptability, route length, ride comfort based 

on steady speed, and robustness of the control system, which are discussed in most previous studies.  

Local planning for autonomous navigation is the key to supporting the five aspects of performance 

[3][4]. Algorithms play an essential role in information processing efficiency, environmental 

adaptability, and choosing of paths. At the same time, the trajectory determines whether a closed-loop 

control system is stable and efficient [5-7]. The smoothness of trajectories ensures ride comfort based 

on steady speed [8-11]. 

Global planning and local planning are two different ideas. The former generates feasible paths in a 

known environment, and the latter focuses on considering the current local environment information of 

the vehicle to obtain short-range routes in the local sampling environment. In the previous documents 

[6][7], dynamic window approach (DWA) and "An anytime, replanning algorithm" embody some basic 

ideas of path planning, which supply heuristic insight for path planning, namely, adjusting and iteration. 

The paper [8] proposes a local planner based on state space sampling to generate offline paths based on 

the quintic Bézier curve with different initial curvatures, which allows the generation of a smooth curve 
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with a slight curvature, and the idea of deciding like a human is instructive. The systematic algorithm 

based on the idea is also enlightening. The path generated by this method has ideal curvature, but the 

quintic curve may have local oscillations and require more computation. The paper [3] gives a systematic 

method for global planning, local planning, and velocity planning based on [8], and the method is 

excellent for a robot moving in a complex static environment. However, the update frequency is not that 

ideal for vehicles moving at high speed, like vehicles moving on the road, and the paper [3] does not 

emphasize the importance of the idea of making a decision like humans. In fact, making a decision and 

updating frequency are essential in path planning of autonomous driving, for rapid changes happen on 

the road. Considering the complex problems faced by automatic driving, researchers integrate 

knowledge and optimize paths by using Intelligent Driver Model (IDM) [9]. And some papers [10][11] 

formulate Partially Observable Decision Processes (POMDPs) to consider uncertainty. Those 2 models 

allow cars to make a decision with humanlike logic to some degree. A method of behavior planning 

based on graph information is provided in [12]. Three approaches mentioned in [13] expand the idea of 

[12], and they are, namely, short-term lateral motion [14], merging behavior at highways [15] or 

courteous behavior at intersections [16], and the 3 methods put forward the higher requirement for the 

updating frequency of algorithm for path generation. For on-road path planning, two old methods used 

in [17] and [18] directly add the temporal dimension to the trajectory search space. However, the 2 

methods are not that suitable for high-speed cars because of the updating frequency, which is essential 

to safety and efficiency to a certain extent. In [19], Gu et al. provide an adaptable, stable, and tunable 

planning scheme with a different method. However, the method in [19] is still unable to overcome the 

disadvantages of the EB method in complex environments. The paper [5] presented an available path-

planning method based on [19] but did not solve the problem. And in [20], a path search method with 

strong adaptability and high efficiency was proposed, but through experimental comparison in [4], the 

potential of the algorithm in [19] in dynamic path planning has not been fully developed. Therefore, 

objectively speaking, local path planning based on forward prediction paths with high update frequency 

is more suitable for complex environments that require rapid response. 

This article proposes an idea for optimizing prediction path generation based on the pruning strategy 

reflected in [3] and the forward path prediction strategy reflected in the source code publicly available 

to the Carnegie Mellon University (CMU) team and analyses the advantages of this optimization 

algorithm. The detailed problem formulation is presented to readers in section 2. Section 3 contains 3 

parts, namely, the dynamic model hypothesis, 2 strategies, and a method of selecting paths as well as 

comparison. The hypothesis of the model can help readers better understand the assumptions and 

premises of path planning in this article. The strategies are the strategies adopted by the method 

mentioned in this article and are the core of understanding the main points of this article. The final part 

illustrates the focus of the method and its advantages. In section 4 and 5, this paper presents the analysis 

of experiments, and discuss the differences, thus illustrating the advantages of this method in relevant 

fields, such as autonomous driving. 

2.  Problem Formulation 

After constructing a map through the acquisition of point cloud data, a dataset reflecting the 

characteristics of the surrounding environment is obtained. Path planning is carried out on this plane, 

including global path planning and local path planning. This article focuses on local path planning and 

introduces two strategies. Finally, by combining strategies, the efficiency of existing local path-planning 

algorithms can be improved. The measure of efficiency is the time required for the algorithm to update 

the forward predicted path once under the same search radius in a known obstacle environment. 

3.  Methodology 

3.1.  Hypothesis of model  

The vehicle kinematics model introduced in this paper is based on the following idealized conditions: 1. 

The vehicle moves in a plane; 2. The steering angles of the left and right front wheels are approximately 

Proceedings of the 2023 International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/10/20230130

30



 

equal; 3. The axle and the whole of the vehicle are absolutely rigid; 4. Ignore the load transfer of front 

and rear axles and the speed changes slowly (The tire direction is consistent with the speed direction). 

The hypothesis mentioned above is used in the path selection method (3.3.1). 

3.2.  Introduction of Strategies  

We assume that there is a LIDAR that can provide point cloud data of the surrounding environment in 

real-time. 

3.2.1.  Pruning strategy. Regarding the positioning module, the Random Sample Consensus (RANSAC) 

algorithm can be used to generate a scatter map that reflects the characteristics of the environment. The 

positional relationship between these scattered points can locate the global position of the subject on the 

map. In order to utilize the relative position of scattered points, this paper introduces a feature extraction 

method proposed in the article [20], which has the advantages of efficiency and robustness. Specifically, 

it extracts endpoints of a series of response line segments based on the scanning data of the lidar. It 

should be noted that under the highly modular architecture in [3], the positioning module can choose 

different methods based on specific situations. 

In map construction, roads will be gridded into Euclidean Distance Grid (EDG), where the distance 

from each cell to the nearest obstacle is assigned to each node in the grid. Cells occupied by obstacles 

have a value of 0, and cells outside the shielded road have a value of 0. This representation is convenient 

and effective for evaluating whether the configuration collides with an obstacle. If the value of the unit 

covered by the vehicle body is greater than the outer radius of the footprint, a collision-free judgment 

can be obtained. With the help of EDG, it can save a lot of computing time by directly using the position 

and posture of the vehicle for collision detection [3]. It should be noted that that is not suitable for cars 

moving in 3D space. 

The pruning method is a key contribution of the method in [3]. In this approach, we need to prepare 

a feasible global planning algorithm to quickly select high-quality global planning paths as a guide. This 

algorithm can be Dijkstra, A *, Rapid Exploration Random Tree (RRT), and so on. 

 First, an algorithm is used to generate a global path from the starting cell to the ending cell, and 

retrieve the parent cell 𝑐𝑖+1  of each cell 𝑐𝑖  in the two-dimensional heuristic path. Then, the angle 

between the vector from c to c and the x-axis base vector is calculated as α, and stored in 𝑐𝑖. 

In the 3D search phase, for the currently expanded 3D [𝑥 𝑦 𝜓] , let planner search for states, 

retrieving each subsequent state based on the designed motion primitive. Calculate the angle between 

the positive x-axis and the vector β from 𝑠𝑖 to 𝑠𝑖+1. If the deviation between α and β is greater than the 

threshold value ε, assume that the vector from 𝑠𝑖 to 𝑠𝑖+1 is in an undesirable search direction, and the 

corresponding motion primitives do not involve the actual deployment process. However, in the issue 

discussed in this article, we need to consider the moving subject as a vehicle whose size can be compared 

to the width of the road, so it is necessary to set a smaller value for ε. Finally, only parts of the designed 

motion primitives are involved in each expanding process. An approximate schematic diagram is shown 

in figure 1. 

According to the idea presented by the CMU team in the publicly available source code 

"LocalPlanner. cpp" on Git, the local path planner can receive laser point cloud information after ground 

segmentation, and then crop the point cloud information, retaining only the point cloud information near 

the vehicle. Here, all processed point cloud information has been converted into the vehicle coordinate 

system. In addition to the point cloud data, the route information generated offline based on the point 

cloud data is also entered into the local planner. Recalling the reference paths just mentioned, in fact, 

these offline generated paths can be optimized by pruning strategies mentioned earlier. 
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Figure 1. An illustration of searching. α, β are marked on it. Straight line is a global planning path. 

Black grids represent obstacles. The paths which are pruned are grey while the preserved path is 

black. (This image is quoted from [3] and can well describe various search paths.) 

3.2.2.  Generation of forward prediction paths offline based on cubic spline interpolation. Firstly, 

initialize the maximum steering angle θ as well as the step length dγ, determine the initial path points, 

and gives the radius length of the path to search for once γ. Next, let  

 𝛾 = [0 𝑑𝛾 2𝑑𝛾 ⋯ 𝛾 − 𝑑𝛾 𝛾]𝑇 (1) 

 𝜃 = [0 𝜃1 ⋯ 𝜃𝑖 ⋯ 𝜃]𝑇 (2) 

Here, 𝛾 and 𝜃 are two 1 ∗ (𝑛 + 1)matrices, where any 𝜃 corresponds to a 𝛾 at the same position with 

 𝜃𝑖 =
𝜃

𝛾
∗ 𝛾𝑖    (𝑖 = 0,1,2 … 𝑛) (3) 

A matrix is now used to represent the lattice position segments that characterize local path characteristics: 

 𝑥 = [𝑥1
𝑇 𝑥2

𝑇 ⋯ 𝑥𝑖
𝑇 ⋯ 𝑥𝑛

𝑇]
𝑇

 (4) 

 𝑥𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]𝑇 (5) 

Now, a smooth path for forward prediction can be generated with Equations 1-3, whose path points 

collection can be described as 𝑥𝑖 = 𝛾𝑖 ∗ cos 𝜃𝑖 and 𝑦𝑖 = 𝛾𝑖 ∗ sin 𝜃𝑖.And,“𝑧𝑖”can be abandoned, however, 

it makes sense when 𝑧𝑖 = 𝜇𝛽′ (here 𝛽′ refers to the direction of vehicle movement, μ is an adjustable 

coefficient). This can further describe the posture of the vehicle, and the information can support the 

calculation of the cost function based on the car dynamics model, which is mentioned in [20], making 

the quality of the trajectory higher. Or, it allows the algorithm to be used in 3D space. By the way, a set 

of path groups can be obtained by iterating through different angle values and nesting search scales. 

Additionally, a pruning strategy can be used to optimize its search space. 

3.3.  Path selecting method and comparison  

3.3.1.  Path selecting method in this article. Under the condition of real-time collection and construction 

of a dataset of environmental obstacle voxel points using LiDAR, this article applies a method which 

allows searching obstacle points near or on the path. Based on it, the optimal path, which is a smooth, 

short, and safe path for vehicles, will be picked out quickly, and the valueless paths will be cut at once. 

The steps are as follows: 

1) Build voxel grids near the path considering the searching radius, which is caused by the blocking 

effect of the vehicle itself. After generating voxel grids, each grid and path index is calculated offline. 

By searching for neighbors within a specified distance around a path point in the path set, which belongs 
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to a set of voxel grids, the index relationship table between each voxel grid and the path to be occluded 

is obtained. 

2) Convert the coordinates of the voxel grid generated in the previous step, the previously generated set 

of path points and the goal point into the coordinates in the vehicle coordinate system. And initialize the 

value of the range of voxel points sampled by the computer. 

3) Then, based on the possible steering of the vehicle body, the voxel points are converted to the 

corresponding coordinate system of car itself. Because the index relationship between the voxel mesh 

and the path is already saved when generating the path and voxel mesh, only the ID number of the mesh 

needs to be calculated to determine which paths will be occluded. Then, it will be pruned. 

4) Finally, based on a given weighting function, traverse each path to obtain the optimal path. 

3.3.2.  Path selecting method in [3]. In [4], Considering the smoothness of local paths and obstacle 

avoidance constraints, a weighted optimization objective function is defined as 

 𝑓(𝑥) = 𝑤𝑠 ∑ [𝛥𝑥𝑖+1 − 𝛥𝑥𝑖]𝑇 ∗ [𝛥𝑥𝑖+1 − 𝛥𝑥𝑖]
𝑛−1

𝑖=2
+ ∑ 𝑤𝑜𝑓𝑜

2(𝑥𝑖)
𝑛

𝑖=1
 (6) 

where 𝑓𝑜 is defined as 

 𝑓𝑜(𝑥𝑖) = {
𝑑𝑆 − 𝜏(𝑥𝑖) (𝜏(𝑥𝑖) ≤ 𝑑)

0(𝜏(𝑥𝑖) > 𝑑)
 (7) 

And what the method in [2] want to find is the path 𝑥∗ defined as 

 𝑥∗ = argmin
𝑥

𝑓(𝑥) (8) 

The obstacle avoidance constraint-solving module is configured to calculate the continuously 

differentiable distance function  𝜏(𝑥𝑖) from the robot to the nearest obstacle based on the Euclidean 

distance grid map and bilinear interpolation method, and obtain the obstacle avoidance constraint 

conditions based on the given safe distance from the robot to the obstacle [3]. 

Using the sparse banded matrix data structure for processing, and refer to the forward elimination 

and back substitution algorithm to obtain a set of optimal paths. It should be noted that preset initial 

values and step sizes have a significant impact on the efficiency of the algorithm. 

3.3.3.  Advantages and disadvantages. The method used in [3] has good computational speed in theory, 

but in some cases, finding an ideal initial value is not easy. And it decouples map updates from local 

optimization steps, making its ability to quickly respond to changes mismatched with its computational 

speed. The method adopted in this paper constantly updates the point cloud information and forward 

prediction path while the vehicle is moving, making it more resilient. 

4.  Result and discussion 

4.1.  Experiment  

In order to test the effectiveness of pruning strategies for forward prediction paths, comparative 

experiments were conducted using MATLAB 2022b in the article. In the case of a path search radius of 

1, set the scaling reduction parameter to 0.6, use three-layer nesting, set the maximum turning angle to 

27°, step size to 0.01, and turn angle traversal step size to 9 °. The pruning condition is simplified to 

determine the range of steering angles in a known environment, and the relationship between voxels of 

obstacles and paths is given.  In practice, other judgment criteria can be used, such as the nearest obstacle 

object's mesh angle, etc. If sharp corners are encountered, the use of pruning strategies is meaningful. 

Moreover, in actual operation, the forward prediction curve that is closer to the original velocity 

direction angle will be calculated faster, which further demonstrates the rationality of the pruning 

strategy. Although, in fact, the forward prediction path is generally not nested three times, it may be 

adopted when the vehicle is moving at high speeds. The increased nesting times in this article is to 

demonstrate the effectiveness of pruning strategies. The specific experimental results are shown in figure 

2 (on the left) and figure 3 (on the right). Note that in figure 3, judgement part will be done in selecting 

part, so the cost of judgement can be ignored. In theory, the more path branches are pruned, the shorter 
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the time interval for algorithm updates within the same search range. However, the case of pruning a 

large number of path branches occurs when turning or crossing obstacles, and the update frequency of 

the algorithm is crucial in these situations. 

  

Figure 2. An illustration of forward prediction 

path generation using pruning strategy. The 

obstacle is painted with black color. It costs 

0.139s to judge, prune and generate paths. And 

the generation part cost about 0.091s. 

Figure 3. An illustration of forward prediction 

path generation mentioned above without 

judgement. Every curve stands for a path. It costs 

about 0.161s. 

 

4.2.  Comparison and analysis 

In the experiment of [4], it takes 62.83s for the E3Mop Algorithm to lead the robot to the goal point and 

it travels 44.2m, and in an experiment in [23], it takes about 1458s to travel 886m. The former has a 

distance to time ratio of approximately 0.703, while the latter has a distance to time ratio of 

approximately 0.608. It should be noted that the former method [4] has an ideal path data update 

frequency of 10Hz for DW robot. But the latter [23] can find a feasible short path within only 0.3ms. 

Even though the latter may not have high path quality and probably requires a significant amount of 

computing resources during vehicle travel, this ultra-high update frequency is crucial for fast and bulky 

vehicles. Based on the premise of ensuring collision free and smooth generation, it is essential to try to 

increase the update frequency as much as possible, generate a certain length of path to guide the vehicle's 

driving, and strive for calculation time. The reason why it is necessary to increase the update frequency 

as much as possible is because the driving environment the vehicle is facing is complex and rapidly 

changing, and collision free is the highest priority requirement. In this process, the length of the 

generated path, which is the radius of the path search range mentioned earlier, plays a key role. On the 

one hand, if the path is too short, the prediction of vehicle travel is not comprehensive enough. On the 

other hand, if the path is too long, the calculation time of the vehicle during the travel process is wasted, 

and the quality of the path cannot be guaranteed. In addition, the feasibility and efficiency of the 

algorithm are more crucial, as they directly affect the quality of the generated path and also affect the 

length of the generated path. 

5.  Conclusion 

This article mainly studies and introduces two path planning ideas for autonomous navigation path 

planning, namely, pruning strategy and forward path prediction strategy, as well as the idea of 

constructing maps and selecting routes. And compared the difference between this route selection 

method based on two strategies and a path selection and generation algorithm in the field of mobile 

robots. In the experimental section, this article pruned and optimized a forward prediction path 

generation algorithm proposed by the CMU team based on the pruning strategy mentioned earlier, which 

improved the efficiency by 13.7% and discussed the possibility of optimization. Note that the efficiency 
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improvement here is conditional. It may not be efficient to deal with complex pruning strategies in high-

dimensional motion planning, but it is feasible to intercept a plane for analysis, because the necessary 

condition for generating a feasible route in space is that the generated path is valid on a plane. So 

applying the strategies mentioned above to local planning algorithms might improve security level when 

dealing with complex dynamic motion environments. 
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