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Abstract. As a typical route planning algorithm, the APF method has been widely used in 

robotics, autopilot and other fields. However, it also has weakness in local optimal point. In 

computer science and mathematics, stochastic perturbation is an accepted approach that can 

assist optimization algorithms leave the local optimal solution and achieve the global optimal 

solution as well as improve robustness and adaptability in specific application situations. 

therefore, the problem can be successfully solved by using stochastic perturbation. In this article, 

the traditional APF improved through stochastic perturbation. When the robot is running in an 

APF, the distance between the robot and the target point is calculated at all times. If the distance 

between the robot and the target point remains unchanged for a period of time or if the stop point 

oscillates, it is determined whether the robot has reached the target point at this time. If not, it is 

determined that the robot has fallen into a local optimal point at this time. After completing the 

judgment, stochastic perturbation is applied to the robot, causing it to jump out of the local 

optimal point and continue to navigate to the target point. The results of the comparison between 

the paths generated by the traditional method and the improved method validate the effectiveness 

of this method.  

Keywords: path planning, artificial potential field, local optimal point, stochastic perturbation.  

1.  Introduction 

Path planning refers to finding a collision-free path from a starting state to a target state in an 

environment with obstacles based on certain evaluation criteria. The related methods are of great 

significance in the automation of robot and unmanned aerial vehicle tasks. After years of development, 

many path planning methods based on different principles have emerged. The ant colony algorithm, that 

simulates the behaviour of ants in finding paths and has the ability of global optimization, proposed by 

Dorigo et al. is a metaheuristic algorithm widely used in path planning and optimization problems. In 

addition, simulated annealing algorithm, genetic algorithm and other algorithms are also widely used in 

path planning and optimization problems [1].  

First proposed by Khatib et al., the artificial potential field method has been widely used in robot 

path planning [2]. However, it also has weakness in local optimal point. Therefore, some researchers 

have proposed improvement and optimization methods for the problems of the APF. For example, 

Kucner et al. proposed an artificial potential field method based on domain segmentation, which divides 

the search space into multiple subspaces and adopting different potential field functions in searching 
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process, thus increasing the ability of local search and global search in the algorithm[3]. An artificial 

potential field method based on gradient descent was suggested by Jung et al.[4], which avoids local 

optimal solutions by introducing gradient descent method and achieves good optimization results. 

Although these optimization methods can effectively increase the search ability of the artificial 

potential field method, complex calculation and optimization strategies still required. As a simple and 

effective technique, random perturbation enables the artificial potential field method better escape from 

local optimal solutions, improving the global search ability of the algorithm. Based on this, this paper 

purposes an improved method. When the robot stops moving in the end, it is judged whether it has 

reached the target point. If it does not, and oscillates around the point, it is considered to have fallen into 

a local optimal point. At this point, stochastic perturbation is added to the robot to help it jump out of 

the local optimum. When the robot leaves the point, the stochastic perturbation stops. If it falls into a 

local optimum again, the above steps are repeated until the robot reaches the target point.  

2.  Traditional artificial potential field method 

The potential field model serves as the foundation for the and approach, an optimization technique 

whose target function is imagined as the movement of a robot in a potential field. Besides, the lowest 

potential energy point is discovered by simulating the robot’s movement process to achieve the best 

result[5]. The major stages are as follows: 

2.1.  Potential field model definition 

Graviton and repulsion usually constitute up the two components of the potential field model. While the 

repulsion drives robots away from the local optimal point, the graviton pulls robots toward the goal 

location. The both components’ weights can be modified to show an impact on the outcomes[6]. 

𝑈(𝑞) = 𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑞) +  𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑞)                                         (1) 

In this formula, 𝑈(𝑞)represents the relationship between the resultant force field and the variable q, 

𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑞) represents the relationship between the attractive field, 𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑞)represents the 

relationship between the repulsive field 

The controlled object is exposed to both repulsion and gravity in the composite field formed by these 

two potential fields. The combination of repulsion and gravity force directs the motion of the controlled 

object to search for a collision-free obstacle avoidance path. 

And function should be characterized as follows: 1. non-negative and continuously differentiable; 2. 

the repulsion field’s force increases with proximity to the obstruction; 3. the gravitational field’s 

intensity lowers with distance from the target area. 

The following parameters of the gravity and repulsion potentials are established here; 

Graviton field 

         𝑈𝑎𝑡𝑡 =
1

2
𝐾𝑎𝑡𝑡𝑃0

𝑚                                                              (2) 

In this formula,  𝐾𝑎𝑡𝑡 is the positive coefficient of the gravity potential field, 𝑃0 is the linear distance 

between the robot and the target point; 𝑀 is gravity potential field factor. 

𝐹𝑎𝑡𝑡(𝑃0) = −∇𝑈𝑎𝑡𝑡(𝑃0) = −𝐾𝑎𝑡𝑡𝑃0                                            (3) 

𝐹𝑎𝑡𝑡  means the negative derivative of the gravity potential field function, presenting the fastest 

directional changes in the gravity potential field and the degree of gravitational force is declared by the 

gravity potential field function on the unmanned vehicle and the target function 

Repulsion field: 

𝑈(𝑃𝑔) = {
1

2
𝐾𝑟𝑒𝑝 (

1

𝑃𝑔
−

1

𝜌
)

2

, 𝑃𝑔 < 𝜌

0            , 𝑃𝑔 ≥ 𝜌
                                               (4) 
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Where 𝜌 is the maximum function range of the obstacle that generates a repulsive force on the 

unmanned vehicle, 𝑃𝑔  is the distance between the obstacle and the unmanned vehicle, 𝐾𝑟𝑒𝑝  is the 

positive proportion coefficient in the repulsion potential field. 

 

Figure 1. Resultant Angle direction in APF.  

The Figure 1 indicates the relationship between the repulsive force of obstacles and the attractive 

force of the target point. 

2.2.  Obstacle creation in the map 

The distribution of obstacles in the market is displayed in Figure 2. 

 

 
(a) (b) 

Figure 2. Force value of APF method. (a) join forces of repulsion and attraction;(b) The coordinates 

of obstacles in 2d map. 

In Figure 2, the gravity and repulsion arising from each obstacle under the defined and are illustrated, 

with the bumps indicating the magnitude of the repulsion field and the height of the longitudinal 

coordinate of the ramp showing the magnitude of the gravity field. 

2.3.  Calculation of potential energy values  

The current potential energy value can be derived by calculating the position and velocity of each robot, 

as well as the objective function value. 

2.4.  Robot position and velocity updates 

The inertial weights, acceleration and historical information of robot position and velocity will support 

the update of robot position and velocity. Simultaneously, the velocity magnitude and position range are 

supposed to be limited to prevent overrunning the search space. 

𝑞 = 𝑞 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐹𝑜𝑟𝑐𝑒                                      (5) 
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In this formula, 𝑞 stands for the real time position of the example, 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 indicates the distance of 

the step, 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐹𝑜𝑟𝑐𝑒 refers to the combined force of the gravity and repulsion fields. 

2.5.  Termination condition judgement 

The iteration will be terminated when the distance between the robot and the target point becomes a 

constant value or has a small range of variation. 

𝑋 = √𝑞2 + 𝑞𝑔𝑜𝑎𝑙
2                                                                (6) 

Where 𝑋 is the distance between the robot and the target point, 𝑞is the location of robot, 𝑞𝑔𝑜𝑎𝑙 is the 

target point position. 

2.6.  Limitations in APF algorithm 

Served by path planning algorithm, the APF algorithm works as a potential energy field bases algorithm. 

In its basic principle, the robot and its surroundings are considered as charged robots, while the potential 

energy of the robot’s location becomes zero and the potential energy of obstacles and target points 

influenced by the distance, forming a potential energy field. Then the robot designs its path through 

minimum total potential energy. However, there are limitations in the APF algorithm. 

It is easy for the APF algorithm to be trapped in local minima, resulting in a failure to reach the 

optimal solution[7]. In practice, the artificial potential field method frequently fails to work well because 

of the existing local optimal point. The presence of multiple local optimal point in the objective function 

makes it difficult for the algorithm to escape from the trap and continue the search for a more optimal 

solution. When the distance between the robot and the obstacle surpasses the influence range of the 

obstacle, the repulsive potential field shows no impact on the robot. Therefore, the potential field method 

can only address the obstacle avoidance problem in the local space and faces blind spot in global 

information, which also causes it easy to fall into local optimal point in the process of usage. The term 

“local optimal point” refers to the influence of multiple functions in some regions of the joint distribution 

space of the gravity potential field function and the repulsion potential field function, whose combined 

forces are minimal and cannot escape from the point. Moreover, the more obstacles there are, the greater 

the possibility of creating a local optimal point. 

 
 

 
(a) (b) (c) 

Figure 3. Different situations of local optimal point. (a)-(c) are different conditions. 

As shown in Figure 3, the robot has no access the target point and oscillates at the local optimal point. 

The red circle represents the function range of the obstacle in repulsion field. 

3.  Improved method 

On the basis of the traditional artificial potential field method, the stochastic perturbation artificial 

potential field method adds some random terms for the total potential field to make it more possible for 

the algorithm to leave the local optimal point. In particular, it can express the total potential field as the 

following form: 
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𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑎𝑡𝑡 + 𝐹𝑟𝑒𝑝 + 𝐹𝑟𝑎𝑛𝑑𝑜𝑚                                               (7) 

𝐹𝑎𝑡𝑡 and 𝐹𝑟𝑒𝑝 are the attraction and repulsion fields, respectively, while 𝐹𝑟𝑎𝑛𝑑𝑜𝑚 serves as a random 

term. 𝐹𝑟𝑎𝑛𝑑𝑜𝑚 can be regarded as a random vector, a random number, or some other random term which 

aims to move the robot in a different direction in each time step, thus out of the local optimal point. 

Adding a random vector to the total potential field gives the simplest method of stochastic 

perturbation [8], which is 

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑒 + 𝑘 × 𝑟𝑎𝑛𝑑𝑛(1,2)                                (8) 

In which, 𝑘 refers to the weight of the random term, 𝑟𝑎𝑛𝑑𝑛(1,2) indicates the function generated by 

the random number in line with the normal distribution. 1 and 2 represents the number of rows and 

columns of the random term, respectively. In actual application, the value of 𝑘  can be modified 

depending on the specific problem to achieve the best optimization effect [9]. 

In addition, the stochastic perturbation can also be carried out in the attraction and repulsion fields, 

which is 

𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡 = 𝐹𝑔𝑜𝑎𝑙 × 𝑘1 + 𝐹𝑔𝑜𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚                                        (9) 

𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑒 = ∑ 𝐹𝑖 × 𝑘2 + 𝐹𝑖 𝑟𝑎𝑛𝑑𝑜𝑚                                        (10) 

Where 𝐹𝑔𝑜𝑎𝑙 serves as the attraction field potential function and 𝐹𝑔𝑜𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚stands for the random 

term of the attraction field. 𝐹𝑖 refers to the obstacle repulsion potential function and 𝐹𝑖 𝑟𝑎𝑛𝑑𝑜𝑚 Figures 

for the repulsion field. 𝑘1 and 𝑘2 refer to the weights of the attraction and repulsion fields, respectively. 

By introducing stochastic perturbation, the robot can be allowed to move in different directions while 

encountering the same environment, thus more possibilities come out to make it easier to escape from 

the local optimal point and acquire a better path planning result in the global context. 

The stochastic perturbation algorithm, an approach to break traps by adding random virtual forces, 

can randomly alter the robot’s position and speed during the search process to increase the its diversity. 

The major steps are as follows: 

3.1.  Judgment that the robot is stuck in the local minimum point 

When an algorithm iteration ends, the robot's distance from the target point is computed, and if it exceeds 

a predetermined threshold, the robot is perceived to have been captured in the local minimum point. 

3.2.  Construct the perturbation vector at random 

A perturbation vector with random magnitude and orientation is created during each iteration. The 

location and speed of robot and can be modified by adopting this vector. 

𝑟 = 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝑚𝑢, 𝑠𝑖𝑔𝑚𝑎, 𝑚, 𝑛)                                          (11) 

The parameter mu stands for the mean value, the parameter sigma denotes the standard deviation, 

and m×n means the matrix size. 

3.3.  Position and velocity of robot with perturbation 

Adding the randomly generated perturbation vectors to the robot position and velocity causes the robot 

to perform certain offsets. Meanwhile, the velocity scale and position range should be limited to avoid 

exceeding the search space. 

3.4.  The updated potential energy value 

Calculating the new position and velocity of the robot, and the value of the objective function can 

produce a new potential energy value [10]. If the new value is lower than the historical best value, the 

new value will become a substitute for best value. Moreover, the robot’s historical best value will also 

be updated if the new potential energy value is smaller than the robot’s historical best value. 
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3.5.  Judgment of termination conditions 

If satisfying the set termination conditions, the search will be halted. Otherwise, return to step 2 and 

continue the Iteration search. 

4.  Analysis of experimental results 

Numerous numerical modelling tests are carried out to verify the efficacy of the stochastic perturbation 

APF algorithm suggested in this article. As shown in Figure 3, the tests are carried out by employing 

the MATLAB software in a straightforward two-dimensional context. The goal point is a green point, 

the robot location is in red and blue point, and the red area denotes the field that repels obstacles. 

   
(a) (b) (c) 

Figure 4. Experimental results. Map of (a)-(c) is similar to that on Figure 3.  

Figure 3 demonstrate the motion of a robot employing the conventional artificial potential field 

method in the same context. While in the Figure 4 the random perturbation is generated with the 

conventional artificial potential field method, which illustrates that the robot can effectively achieve the 

goal point and avoid the local minimum point by incorporating random perturbation after it reaches the 

local optimum. 

According to research outcomes, the approach suggested in this article are able to prevent getting 

caught into the local optimal point and may identify the global optimum solution more quickly in a 

certain degree. Particularly, the suggested method in this paper has enhanced both the efficiency of the 

search and the precision of the end answer as compared to the conventional artificial potential field 

method. This implies that the stochastic perturbation algorithm can efficiently boost the search's 

diversity, assisting the and technique in avoiding the trap and spotting a superior answer. 

5.  Conclusion 
This paper presents an improved algorithm to solve the problem of local optimal point in and called the 

stochastic perturbation artificial potential field method. As the robot moves through an end, the distance 

between the robot and the target point is always calculated. If the distance between the robot and the 

target point remains constant over a period of time, or if the stopping point oscillates, it is determined 

whether the robot has reached the target point at that point. If not, it is determined that the robot has 

fallen into a local optimum at this point. Once the determination is complete, a random perturbation is 

applied to the robot to cause it to jump out of the local optimum and continue navigating towards the 

target point. Where the local optimal point challenge of the APF algorithm is solved, and the algorithm’s 

efficacy is confirmed by numerical simulation tests, with the assist of random perturbation. 

There are still some problems with this algorithm, such as the difficulty in determining the direction 

of robot movement after adding random perturbations, resulting in a route that may not be optimal, and 

secondly, when the robot is moving in an end, there are some dynamic obstacles, and when the potential 

field of these obstacles changes from moment to moment, resulting in the difficulty in determining the 

size of the random perturbations. In future work, the end of the robot in the presence of dynamic 

obstacles will be taken into consideration and optimize the algorithm so that the robot can find the 

optimal route for obstacle avoidance faster and better. 
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