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Abstract. Nowadays, with the development of robotics-related technology, its applications 

permeate many aspects of work and life; In product manufacturing and assembly, tech companies 

switch from manual to robot automation which improves the production volume and reduces the 

assembly time. In the tertiary sector including health and social work, the robots learn how to 

interact with people to meet specified requirements. Path planning constitutes a critical module 

of robotics engineering that aims to provide the optimal solution for the robot to reach its target 

point. The artificial potential field methods, refers to APF, are widely used to realize path 

planning due to their simplicity of calculation and effectiveness in obstacle avoidance. However, 

the traditional artificial potential field method features the local minimum and oscillation, and 

unreachable target point problems that make it hard for robots to reach the target point. Based 

on the weaknesses, an improved version of the gravitation and repulsion force function was 

introduced in this paper. In addition, the concept of safety distance also contributed to the path 

planning for robots. Through the simulation experiment, it was shown that the improved APF 

algorithm successfully addressed the local minima and unreachable target point problem, which 

could navigate robots to arrive at the destination in both 2D and 3D space by avoiding collision 

with obstacles. 

Keywords: robots, improved artificial potential field method, local minima, oscillation, 

unreachable target point. 

1.  Introduction 

The diverse research topics in the functionality and potential application of robotics attracted scientists 

and engineers from different backgrounds to work together. One of the most inspiring directions in 

robotics engineering that has a long history is the path planning method research of the moving object 

in 2D or 3D space. The core objective of path planning lies in determining a sequence of movement that 

could manipulate the robots starting from the initial position to safely and effectively reach the desired 

target point in the complex environment without colliding with any obstacles or other robots [1]; The 

global and local path planning are two subdivisions that use different strategies to realize the path 

planning [2]. Global path planning takes advantages of the information in a given environment and 

implemented algorithms such as𝐴*, colony, and Randomly Exploring Random Tree (RRT) to find the 

optimal path [3-5]. Local path planning focused on generating a feasible path in the immediate vicinity 

of the robot, which could be achieved by the artificial potential field (APF), pure pursuit, and model 
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predictive control method (MPC) that could adapt to dynamic changes in the surrounding environment 

[6]. Compared with other complicated algorithms, the artificial potential field method is more user-

friendly for path planning based on its simple calculation and hands-on simulation. Nevertheless, the 

traditional artificial potential field presents challenges in situations where the local minimum problem 

or unreachable target point occurs [7]. The local minimum problem is when the robots experience zero 

net force in the 2D or 3D complex environment, which keeps the robot static and away from the desired 

target point. The unreachable target point means that the robots experienced gravitational attraction 

weaker than the repulsive force exerted by the obstacles surrounding the robots. The entire path planning 

simulation will be therefore interrupted if one of these two scenarios happens. The optimal solution to 

improve the traditional artificial potential field method is still a topic of discussion and open to different 

interpretations from researchers. Yifan Su et al. designed a simulated annealing method that utilized the 

metropolis criteria to solve the local minimum and oscillation problem [8]. Chengfu Jiang proposed the 

concept of an escaping force that can be used to adjust the gravitational attraction and repulsion force in 

the vertical direction, thereby enabling the robot to escape away from local minima points [9]. Xia Chen 

developed a path optimization technique that iteratively determines the optimal solution for every single 

point along the path [10]. 

The aim of this research is to address the limitations of the traditional artificial potential field (APF) 

method, specifically the issues related to local minima and unreachable target points. This will be 

achieved by modifying the parameters and safety distance criterion of the gravitational and repulsive 

force functions used in the APF method. Additionally, a flowchart diagram will be established to provide 

a clear outline of the steps required to implement the improved APF algorithm. 

The structure of this research paper is divided into three main parts. Firstly, the traditional artificial 

potential field approach is presented, with its limitations highlighted. Secondly, an improved APF 

algorithm is proposed to address the issues of local minima and unreachable target point. Lastly, the 

simulation results are analyzed and compared with these of the traditional artificial potential fields. 

2.  Concept of traditional artificial potential field (APF) method 

In 1986, Oussama Khatib, currently a roboticist and computer science professor from Stanford 

University, proposed the traditional artificial potential field method [11]. The approach assumes that a 

mobile robot or unmanned aerial vehicle (UAV) within a given workspace is subject to an attraction 

force generated by the final target point, which acts as a gravitational field; At the same time, the robot 

experiences the repulsion force from the surrounding obstacles in the workspace; The gravitational 

attraction and repulsion force finally combine into the resultant force in 2D or 3D cartesian coordinates, 

which eventually navigates the robot to reach the destination. Figure 1 describes the free-body diagram 

of robots in the potential field: 

 

Figure 1. Free body diagram of mobile robot in the workspace.  
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2.1.  Basic gravitational field and force function are defined as: 

 𝑈𝑎𝑡𝑡(𝑋) = 𝐾𝑎𝑡𝑡(𝑋𝑢 − 𝑋𝑔)2 (1) 

The equation involves several parameters. 𝐾𝑎𝑡𝑡 represents the dynamic gain coefficient of attraction 

force, 𝑋𝑢 is the coordinate of the moving object such as mobile robot or UAV, 𝑋𝑔 is the coordinate of 

the destination point, and the Euclidean or absolute distance between the mobile robot and destination 

point is given by (𝑋𝑢 − 𝑋𝑔)2. 

Gravitational force is obtained by: 

                                                𝐹𝑎𝑡𝑡 = −𝛻𝑈𝑎𝑡𝑡(𝑋) = −𝐾𝑎|𝑋 − 𝑋𝑔|                                            (2) 

Where 𝛻  is the gradient sign equivalent to the partial derivative of gravitational attraction with 

respect to the 𝑥𝑦𝑧positions 
𝜕𝑈𝑎𝑡𝑡

𝜕𝑋
, 
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,
𝜕𝑈𝑎𝑡𝑡

𝜕𝑍
. 

2.2.  Basic repulsive field and force function are defined as: 

The repulsive field generated by obstacles is a function of the distance between the robot and obstacles. 

When the distance is beyond a certain influential radius, then the mobile robot is considered to be in a 

relatively safe position, and the repulsive field is zero at that point. 

 𝑈𝑟𝑒𝑝  (𝑥) =  {
𝑘𝑟𝑒𝑝 (

1

(𝑋𝑢−𝑋𝑜𝑏)
−

1

𝜌0
)

2
 ,     (𝑋𝑢 − 𝑋𝑜𝑏) < 𝜌0

0  ,                                          (𝑋𝑢 − 𝑋𝑜𝑏) ≥ 𝜌0

 (3) 

Where 𝑘𝑟𝑒𝑝  represents the repulsion force gain coefficient, 𝑋𝑢 is the position of the mobile 

robot/UAV, 𝑋𝑜𝑏 is the position of the obstacle, 𝜌0 is the influential radius of the obstacle. 

Gravitational attraction is obtained by: 

 𝐹𝑟𝑒𝑝 = −𝛻𝑈𝑟𝑒𝑝(𝑋)       (4) 

2.3.  Resultant potential field and force function are defined as: 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑎𝑡𝑡(𝑋) + ∑ 𝑈𝑟𝑒𝑝(𝑋)

𝑛

𝑖=1

  

          (5) 

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑎𝑡𝑡 + ∑ 𝐹𝑟𝑒𝑝

𝑛

𝑖=1

= −𝛻𝑈𝑎𝑡𝑡(𝑋) − ∑ 𝛻𝑈𝑟𝑒𝑝(𝑋)

𝑛

𝑖=1

 

By combining the gravitational and repulsive potential fields in a 2D or 3D cartesian coordinate system, 

a resultant potential field is created. This resultant force determines the direction in which the mobile 

robots should move as it navigates towards the final target point. 

There are multiple obstacles surrounding the robot in the path planning, therefore the resultant force 

is calculated by the gravitational force and summation of repulsion force at any point where the absolute 

distance between the robot and obstacles is within the influential radius of obstacles. This approach 

ensures that the robot’s movements are influenced by all obstacles in the area of close proximity.  

However, here are some disadvantages of using the traditional artificial potential field method for 

path planning in 2D or 3D space.  

2.4.  Local minima point 

The problem of being trapped in a local minima occurs when the gravitational attraction and repulsion 

force experienced by the mobile robot cancel each other out in a 2D or 3D coordinate system, leading 

to the zero resultant force that prevents the robot from reaching the target. This typically happens in 

situations where an obstacle is located exactly between the robot/UAV and target point. In a virtual 
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environment having multiple static and dynamic obstacles, the incidence rate of the local minimum point 

would be enhanced. Figure 2. depicts two possible situations where the local minimum point may occur: 

 

Figure 2. The schematic of situations where the local minimum point may occur. 

2.5.  Unreachable target point 

According to the force function of the traditional APF method, the gravitational force that acts on the 

robot decreases as it approaches to the target point. Conversely, the repulsive force exerted by obstacles 

increases as the robot approaches the target point. When an obstacle is situated near the target point, the 

repulsive force can become greater than the gravitational force, preventing the robot from reaching its 

destination. In the artificial potential field approach, gravitational attraction and repulsive force are the 

primary factors that determine the robot's movement. Figure 3. shown below illustrates a scenario where 

the target point is unreachable: 

 

Figure 3. The schematic of the unreachable target problem. 

In the traditional APF method, the gravitational and repulsive forces are primarily determined by the 

distances between the robot, obstacle, and target point; Such a simple assumption would lead to the 

problem of a local minima and unreachable target. To solve these two issues, the traditional attraction 

and repulsion force functions were improved to include newly defined force parameters. Within a certain 

range of safety distances, the adjusted gravitational and repulsive force parameters will be activated in 

the function to help navigate the robot. 

3.  Improved APF algorithm 

The traditional APF algorithm's force functions result in weaker gravitational force as the robot 

approaches the final target point and stronger repulsion force as the robot approaches obstacles. 

Consequently, when obstacles are located close to the target point, the repulsion force may overpower 
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the gravitational force, leading to an imbalanced force that traps the robot in a loop around the target. 

To tackle this problem, the redefined function aims to address the issue of the unreachable target point. 

Improved gravitational field: 

                                             𝑈𝑎𝑡𝑡(𝑋) =
1

2
𝑘𝑎𝑡𝑡𝜂(𝑋𝑢 − 𝑋𝑔)2       

                                               (6) 

η = {

1

2
[𝑠𝑖𝑛(

 (X𝑢  − X𝑔 ) − 𝑅0

ρ0
· 𝜋 −

𝜋

2
) + 1] ,   𝑅0 ≤ (𝑋0 − 𝑋𝑢) < 𝑅0 + ρ0

1 ,                                                                  (𝑋0 − 𝑋𝑢) ≥ 𝑅0 + ρ0 

 

Where 𝑘𝑎𝑡𝑡  is the gravitational force gain coefficient, 𝜂 is the newly defined dynamic attraction 

coefficient that adjusts the attraction force to avoid zero potential point, 𝑋𝑢 is the coordinate of the robot, 

𝑋𝑔 represents the target coordinate, (𝑋𝑢 − 𝑋𝑔)2 is the Euclidean or absolute distance from the robot to 

the target, 𝑅0 is the radius of the obstacle, 𝜌0 is the influential radius of the obstacle, 𝑋0 is the coordinate 

of the potential local minima point.  

The strength of the gravitational force in the improved APF is dependent t on three main factors: the 

gain coefficient of attraction force 𝑘𝑎𝑡𝑡, line segment distance from the robot to the obstacle (𝑋𝑢 − 𝑋𝑔)2 

and dynamic attraction coefficient 𝜂. The value of the dynamic attraction coefficient 𝜂 changes based 

on the proximity of the robot to the zero potential point.  

The cause of an unreachable target point can be attributed to the final target point not being the local 

minimum point. To address this issue, a revised gravitational force function is utilized to steer the robot 

away from the local minima and arrive at the target point where the resultant force is zero. If the distance 

from the mobile robot and zero potential field point fall in the distance range 𝑅0~𝑅0 + 𝜌0, then the 

newly defined attraction coefficient 𝜂 would be added into the function to adjust attraction force and 

keep robots away from local minima. Otherwise, the attraction coefficient 𝜂 would be equal to unity, 

remaining the gravitational force function the same as that of the traditional method. In this way, the 

dynamic gravitational parameter 𝜂 serves as a decent solution to the local minima problem.  

Improved gravitational force: 

 𝐹𝑎𝑡𝑡 = −𝛻𝑈𝑎𝑡𝑡(𝑋) = −𝐾𝑎𝑡𝑡𝜂(𝑋𝑢 − 𝑋𝑔) (7) 

The gravitational force is obtained by computing the rate of change of gravitational potential field 

function in 3D space with respect to the 𝑥𝑦𝑧 direction: 

The improved repulsive potential field and force: 

𝑈𝑟𝑒𝑝(𝑋) = −𝜆𝐾𝑟𝑒𝑝(
1

(𝑋𝑢 − 𝑋𝑜𝑏)
−

1

𝜌0
)2 

 

  λ = {

1

2
[𝑐𝑜𝑠(

 (X𝑢 −X𝑔 )−ρ0

ρ0
· 𝜋) + 1] ,   ρ0 ≤ (𝑋0 − 𝑋𝑢) ≤ ρ1

0  ,                                                        (𝑋0 − 𝑋𝑢) ≥ ρ1

                                (8) 

                                                     𝐹𝑟𝑒𝑝 = −𝛻𝑈𝑟𝑒𝑝(𝑋)  

Where 𝐾𝑟𝑒𝑝 is the repulsive gain coefficient, 𝜆 is the newly defined dynamic repulsion coefficient 

that adjusts the repulsive force to avoid zero potential point, (𝑋𝑢 − 𝑋𝑜𝑏)2 is the Euclidean or absolute 

distance from the robot to the obstacles, and 𝜌1 = 2𝜌0  is the double influential radius of obstacles.  

The improved repulsive force is a function of the repulsion gain coefficient 𝐾𝑟𝑒𝑝, the shortest line 

distance from the robot to obstacle (𝑋𝑢 − 𝑋𝑜𝑏)2, and dynamic repulsion coefficient 𝜆. 

Under the traditional APF algorithm, as the robot approaches the final destination, the robot could 

be directed away from the target due to the strong repulsion force from obstacles. To address this 

problem, an improved repulsive force function has been introduced. Given the distance from the robot 

𝑋𝑢  to the obstacle 𝑋𝑜𝑏  that falls in the specific distance range 𝜌0~𝜌1, the dynamic coefficient 𝜆 is 

added to the function and changes according to the position of the robot in relation to that of the target 
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point; The dynamic coefficient 𝜆  eventually becomes zero and turns the repulsion force into zero value 

when the robot arrives at the target point and stays in a static state. For the second condition of dynamic 

coefficient 𝜆, it is automatically zero when the robot is out of safety distance from an obstacle. 

 

Figure 4. The 

flowchart diagram 

for improved APF 

algorithm. 

 

Figure 4. is the flowchart diagram that clearly shows the steps for implementing APF algorithm. The 

basic parameter such as the initial, target position, number of obstacles, attraction gain coefficient𝐾𝑎𝑡𝑡, 

and repulsion gain 𝐾𝑟𝑒𝑝 were initialized at first. If the mobile robot is close to the local minimum point, 

the improved gravitational force function is added with the adjusted attraction parameter 𝜂  for the robot 

to avoid that point. The improved repulsion force as a function of the robot and target position results in 

a zero repulsion force at the target point. The new APF algorithm enables the robot to realize path 

planning by obstacle avoidance. 

4.  2D map simulation of both traditional and improved APF method 

In path planning simulation research in 2D cartesian space, MATLAB software is used to compare the 

difference between the traditional and improved APF methods. The objective is to test whether the 

improved algorithm can successfully solve the problems of local minima and unreachable target point. 

It turned out that the final simulation results of the improved APF algorithm demonstrated higher 

capability in the robot’s path planning by obstacle avoidance. 
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The parameters such as the starting point, end point, and others were first initialized to perform the 

simulation for the traditional APF algorithm in MATLAB. Table 1. below is a collection of initial 

parameters: 

Table 1. The initialized parameters for the traditional artificial potential field method. 

Parameter Name Symbol Parameter Value 

Starting point coordinate 𝑋𝑜 (0,0) 

Gravitational force gain coefficient  𝐾𝑎𝑡𝑡 10 

Repulsive force gain coefficient   𝐾𝑟𝑒𝑝 2 

Number of obstacles in the path  𝑛 20 

End point coordinate       𝑋𝑡𝑎𝑟𝑔𝑒𝑡 (10.5,8) 

Influential radius of obstacles   𝜌0 20 

Number of iterations of force function    𝐽 200 

Step Size   𝐼 0.5 

In the path planning simulation map shown below, the starting point at (0,0) is set as a red block, the 

target point at (10.5,8) is set as a red inverted triangle, and twenty obstacles are set as circles. The 

efficiency of traditional APF algorithms is evaluated based on the robot’s motion depicted by a 

continuous red line.  

 

Figure 5. Local minima problem caused by traditional APF.  

As shown in Fig. 5 shown above, it is clear that the mobile robot falls into a local minimum point in 

the position where it is surrounded by two nearby obstacles; Within the influential radius of the obstacles, 

the robot experiences two repulsion forces that went in the opposite direction and canceled part of each, 

forming the zero resultant force on the mobile robot. As a result, the mobile robot had local oscillations 

and failed to reach the final target point. 

An improved APF algorithm was utilized to handle the problem of the local minima point; The main 

approach for the improved APF algorithm focused on adding the dynamic gravitational and repulsive 

gain coefficient 𝜂/𝜆  to the original gravitational force and repulsive force function respectively. The 

dynamic gain coefficients serve as the functions of the robot, obstacle, target position as well as 

influential radius 𝜌0. 

To validate the solution for local minima points, the basic parameters remained unchanged compared 

with those of traditional APF simulation except for the repulsion gain coefficient 𝐾𝑟𝑒𝑝 The repulsion 

gain coefficient is 5. 

Based on the simulation result of an improved APF algorithm, the mobile robot is in discrete motion 

represented by small tiny red dots, which is clearly shown in the enhanced picture. Starting point is the 

red block at the origin, and the ending point is the inverted triangle. 
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Figure 6. Smooth path planning by improved APF.  

From Figure 6 shown above, the mobile robot starting from the origin never stops its motion and 

finally reaches the designated point by steering away from all the obstacles in the path; The obstacles 

within the influential radius from the robot apply the adjusted repulsion force on it. Through the 

simulation, the improved APF algorithm effectively addresses the issue of local minima point by 

introducing a newly defined dynamic gravitational gain coefficient 𝜂. 

Besides the local minima problem, the implementation of the traditional APF algorithm faces another 

challenge called the unreachable target point problem. Below is the simulation result by the traditional 

APF algorithm. 

 

Figure 7. Unreachable target caused by traditional APF method.  

The simulation results indicate that as the mobile robot from the origin approaches close to the same 

final target point (10.5,8) surrounded by the obstacles, it oscillates around the target point and fails to 

reach it; This is because the repulsion forces from the obstacles become stronger than the gravitational 

forces as the robot gets closer to the target point. The traditional APF algorithm is therefore not effective 

in handling the problem of an unreachable target point. 
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Figure 8. The smooth path planning by improved APF. 

The improved APF algorithm can resolve the unreachable target point challenge, as demonstrated in 

Figure 8. The mobile robot smoothly passes through the obstacle that is placed right in front of the final 

target point without any collision and reaches the target described by a red inverted triangle. The 

repulsion force from the obstacle is getting smaller and smaller due to the dynamic repulsive gain 

coefficient 𝜆  added to the repulsive force function. It is clear to see how the improved APF algorithm 

serves as a solution to the unreachable target points. 

Through the 2D path planning simulation conducted in MATLAB, a clear comparison between the 

traditional and improved APF algorithms in terms of their ability to address local minimum and 

unreachable target point problems has been presented. Based on the simulation results, it can be inferred 

that the improved APF algorithm is a more potent and efficient approach for obstacle avoidance and 

robot navigation. 

5.  3D map simulation of both traditional and improved APF method 

In the map shown below, the dimension of the 3D space is (100,100,100). The starting point at (0,0,0) 

is set as the red star, the target point at (40,40,40) is set as an inverted triangle, and six obstacles along 

the path are set as circles. The motion of the robot is described by the continuous red line. Below are 

four figures representing four difficulty levels of path planning for the robots. The first three figures 

successfully demonstrate the efficacy of the improved APF algorithm in path planning. However, the 

last figure shows the current improved APF algorithm may encounter difficulties when the environment 

is getting intensively complicated. 

 
 

Figure 9. Smooth 3D path planning by improved 

APF.  

Figure 10. Smooth 3D path planning by 

improved APF.  
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Figure 11. Smooth 3D path planning by 

improved APF. 

Figure 12. Path planning failure by improved 

APF. 

The mobile robot navigates smoothly to the final target point without encountering any obstacles as 

shown in Figure 9. In Figure 10, the number of obstacles close to the final target point is increased from 

two to four, yet the robot can still efficiently reach the final destination. The effectiveness of the path 

planning approach using the improved APF algorithm is strongly demonstrated in Figure 11, where the 

robot successfully bypasses all the obstacles and reaches the target position. However, Figure 12 reveals 

a limitation of the improved APF algorithm, as it fails to guarantee perfect path planning when there are 

too many obstacles in the path toward the target point. 

6.  Conclusion 

This research paper mainly proposed the improved APF method and analyzed its performance in solving 

the local minima and unreachable target point problems compared with that of the traditional APF 

algorithm. The 2D and 3D simulation results were demonstrated in the MATLAB simulation 

respectively. Based on the MATLAB simulation, it can be concluded that the improved APF algorithm 

outperformed the traditional one in the robot’s path planning through obstacle avoidance. However, if 

the environment setting becomes extremely complicated as shown in Figure 13., the improved APF 

algorithm may exhibit certain shortcomings and guide the robot in the wrong direction. Therefore, it 

still requires deeper insight from researchers to handle more complex scenarios and make it more robust 

and reliable for the path planning task. 
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