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Abstract. The purpose of this research is to examine how well the Improved Memetic 
Continuous Pheromone-based Ant Colony Optimization (ICMPACO) algorithm solves standard 
Traveling Salesman Problem (TSP) instances in comparison to the basic Ant Colony 
Optimization (ACO) algorithm and the Improved Ant Colony Optimization (IACO) algorithm. 
The findings of the computer simulation show that the ICMPACO algorithm has higher 
optimization capabilities, particularly for the berlin52, eil51, and dantzig42 examples. This 
superiority is further emphasized through better mean values in comparison to traditional ACO 
methods. The study also proposes a novel approach, Genetic Ant Colony Optimization (GACO), 
which integrates ACO with genetic algorithms. Pheromone data is efficiently employed to direct 
the choice of genetic operation points and maintain the foundational elements within the genetic 
algorithm. Performance results for various TSP instances reveal the potential of GACO in 
generating high-quality solutions. These findings suggest that both ICMPACO and GACO 
methods hold significant promise in addressing complex optimization challenges and could pave 
the way for further advancements in enhancing optimization algorithm performance. 
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1.  Introduction 
The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem that has 
attracted considerable interest in both theoretical and practical research fields, with applications in 
robotic research and multi-robot coordination [1-3]. At its most basic level, the TSP seeks to determine 
the most efficient route for a salesman who must visit a collection of cities and return to their starting 
location. The goal is to reduce the overall distance or expense of the journey, while guaranteeing that 
every city is visited just once [4]. In reality, the TSP has numerous practical applications across various 
domains. For instance, it is used in logistics and supply chain management to optimize vehicle routing 
and minimize transportation costs. Similarly, the TSP has applications in manufacturing for optimizing 
the sequencing of tasks on assembly lines or the scheduling of machines to reduce production time and 
costs. Moreover, the TSP finds relevance in areas such as network design, circuit board drilling, and 
DNA sequencing. In these cases, the problem's core elements remain the same, although the specific 
objective functions and constraints may vary [5]. 

Solving the Traveling Salesman Problem (TSP) continues to be challenging due to its NP-hard nature, 
where finding optimal solutions becomes increasingly difficult as the number of cities grows. Key issues 
include scalability, as large-scale TSP instances require considerable computational effort, and the need 
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to address real-world complexities like additional constraints, time windows, and varying capacities. 
Algorithm performance is another challenge, as heuristics and metaheuristics depend on parameter 
settings and problem characteristics, driving research into adaptive and self-tuning mechanisms. 
Hybridization of different optimization techniques, can improve solution quality and convergence speed. 

Drawing inspiration from the foraging behavior of ants, the Ant Colony Optimization (ACO) 
algorithm has risen to prominence as a widely used and successful meta-heuristic approach to addressing 
the Traveling Salesman Problem (TSP). The ACO algorithm emulates the process by which ants leave 
pheromone trails to convey information and direct fellow colony members towards the most efficient 
route between their nest and a food source [6]. In the context of TSP, artificial ants construct solutions 
by traversing graphs representing cities and their interconnected distances, and depositing pheromone 
trajectories that influence subsequent ants' choices. This iterative process eventually converges to an 
optimal or near-optimal solution. the success of ACO in solving TSP instances stems from its ability to 
balance exploration and exploitation, preventing premature convergence to suboptimal solutions [7]. 
With the increasing complexity of large-scale optimization problems, even advanced ACO algorithms 
encounter certain constraints when tackling these demanding challenges. They may exhibit slow 
convergence speeds and a propensity to become trapped in local optima. Tackling these issues and 
improving the performance of ACO algorithms in large-scale optimization problems have become 
critical challenges for researchers and practitioners [8]. 

Numerous ACO variants have emerged over the years, generally falling into three categories: 
algorithm parameter control, pheromone updating strategies, and integration with auxiliary search 
operators. To counteract premature convergence, some approaches propose updating pheromone 
concentrations based solely on the best-performing ants' trails while restricting pheromone levels to a 
finite range for optimal performance. Others have suggested an algorithm combining the Ant Colony 
System (ACS) with the Taguchi method for solving the TSP, leveraging Taguchi's parameter 
optimization technique to enhance the algorithm's optimization capabilities. Moreover, an improved 
ACO variant conducts multiple explorations within a single iteration to expedite the discovery of optimal 
solutions and dynamically adjusts parameters to prevent ants from revisiting paths. Despite significant 
advancements in search performance, ACO algorithms still grapple with limitations, including 
premature convergence, susceptibility to local optima, and subpar performance in high-dimensional, 
complex problems [9]. 

To tackle the issue of premature convergence and susceptibility to local optima in the ACO algorithm, 
a pheromone update and weighted combination of transfer probabilities utilizing fractional order 
differences is suggested. Additionally, a hybrid approach, integrating genetic algorithms with the ACO 
algorithm, is proposed to enhance the optimality finding capability and stability when addressing more 
intricate TSP problems. Computer simulation results indicate that, compared to the traditional ACO 
algorithm, the optimized parameters and combination with other algorithms significantly improve the 
ACO algorithm's speed, optimization ability, and stability when solving TSP problems. 

2.  Problem formulation 

2.1.  ACO algorithm 
The ACO is mainly composed of transition rules and pheromone update rules, for transition rules the 
expression is.  

                                                   𝜏𝜏𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘(𝑡𝑡) = (𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)𝛼𝛼 ∗ 𝜂𝜂𝑖𝑖𝑖𝑖
𝛽𝛽 ) ∗ 𝛴𝛴(𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)𝛼𝛼 ∗ 𝜂𝜂𝑖𝑖𝑖𝑖

𝛽𝛽)−1                                   (1)  

where 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘(𝑡𝑡) is the probability of ant 𝑘𝑘 moving from city 𝑖𝑖 to city 𝑗𝑗 at time 𝑡𝑡. 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) is the pheromone 
trail intensity between city 𝑖𝑖 and city 𝑗𝑗 at time 𝑡𝑡. 𝜂𝜂𝑖𝑖𝑖𝑖 is the heuristic information, typically the inverse of 
the distance between city 𝑖𝑖 and city 𝑗𝑗. 𝛼𝛼 and 𝛽𝛽 are parameters controlling the relative importance of 
pheromone trails and heuristic information.The denominator represents the sum of all possible edges' 
attractiveness from city 𝑖𝑖 to all other unvisited cities 𝑙𝑙. 
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After ants complete their tours, the pheromone trails on the edges are updated to reinforce the paths 
taken by the ants. The pheromone update formula is:  

                                                𝜏𝜏(𝑟𝑟,𝑢𝑢) = (1 − 𝜌𝜌)𝜏𝜏(𝑟𝑟, 𝑠𝑠) + ∑ Δ𝜏𝜏𝑘𝑘(𝑟𝑟, 𝑠𝑠)𝑚𝑚
𝑘𝑘=1                                       (2) 

where 𝜌𝜌 (0 < 𝜌𝜌 < 1) represents the pheromone trail evaporation rate. Δ𝜏𝜏𝑘𝑘(𝑟𝑟, 𝑠𝑠) refers to the quantity 
of pheromone trail deposited by ant 𝑘𝑘.on the edge connecting nodes 𝑟𝑟 and 𝑠𝑠during the time interval 
between 𝑡𝑡 and Δt + t within its tour. The following explanation elaborates on this concept: 

                                                            Δ𝜏𝜏𝑘𝑘(𝑟𝑟, 𝑠𝑠) = {
𝑄𝑄
𝐿𝐿𝑘𝑘

(r,s) ∈ 𝜋𝜋𝑘𝑘
0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                                                (3) 

2.2.  Genetic algorithm 
The Genetic Algorithm (GA) has proven highly effective in addressing machine learning and 
optimization challenges. To tackle a problem, the GA employs a population of individuals, often referred 
to as strings or chromosomes, and modifies this population probabilistically using genetic operators like 
selection, crossover, and mutation [10]. 

3.  Method  

3.1.  ICMPACO 
The The natural process of co-evolution served as the basis for the development of the Co-evolutionary 
algorithm, which uses the principles of decomposition and coordination to partition complex 
optimization challenges into a number of interconnected sub-challenges for optimization and 
coordination. This paper develops a novel Multiple Swarm Co-evolutionary Ant Colony Optimization 
(ICMPACO) algorithm for solving large-scale optimization problems by incorporating a number of 
different swarm strategies, co-evolutionary mechanisms, pheromone update approaches, and pheromone 
diffusion techniques into the ACO algorithm [8]. In the ACO method, just one species of ant is used to 
develop solutions. These solutions can be regulated by the parameters for colony size, selection, and 
convergence. Several swarming tactics are utilized, with the ants being separated into elite and regular 
categories. To increase the rate at which ACO converges, Elite Ants retrieve information from a solution 
library and generate solutions by employing Gaussian kernel functions and probabilistic selection 
procedures, in addition to the parameters that are specific to them. Normal ants, on the other hand, make 
use of a single Gaussian function and dimension values that are on average, generating new solutions at 
a slower rate in order to avoid becoming trapped in local optima [8]. The equations are written as follows: 

                                                                𝑓𝑓𝑁𝑁𝑖𝑖 (𝑥𝑥) = 1
𝜎𝜎𝑖𝑖,𝑁𝑁√2𝜋𝜋

𝑒𝑒
−

(𝑥𝑥−𝜇𝜇𝑖𝑖,𝑁𝑁)2

2𝜎𝜎𝑖𝑖,𝑁𝑁
2                                                  (4) 

                                                                     𝜇𝜇𝑖𝑖,𝑁𝑁 = � 𝑠𝑠𝑖𝑖,𝑘𝑘
𝐾𝐾
𝑘𝑘=1                                                            (5) 

                                                              𝜎𝜎𝑖𝑖,𝑁𝑁 = 𝜉𝜉𝑁𝑁�
�𝑠𝑠𝑖𝑖,𝑒𝑒−𝑠𝑠𝑖𝑖�
𝐾𝐾−1

𝐾𝐾

𝑒𝑒=1
                                                        (6) 

where 𝑓𝑓𝑁𝑁𝑖𝑖 (𝑥𝑥) represents the Gaussian function for normal ants in the 𝑖𝑖th dimension, with 𝜇𝜇𝑖𝑖,𝑁𝑁 as its 
sample value and 𝜎𝜎𝑖𝑖,𝑁𝑁 as the calculated standard deviation. 𝑠𝑠𝑖𝑖 is the average value of solutions in the 𝑖𝑖th 
dimension, while 𝜉𝜉𝑁𝑁  is a constant controlling the convergence rate of common ants. Consequently, 
common ants can efficiently expand the search range and boost global search capabilities. Pheromone 
update is crucial in the optimization process [8]. New pheromone updating tactics and diffusion 
mechanisms have been presented in order to improve the performance of the ACO algorithm when 
applied to the solution of difficult optimization problems. Among them are strategies for both local and 
global pheromone updates. The equation for a local pheromone update is as follows: 

                                                              𝜏𝜏𝑥𝑥,𝑦𝑦
(𝑖𝑖) = (1 − 𝜌𝜌𝐿𝐿)𝜏𝜏𝑥𝑥,𝑦𝑦

(𝑖𝑖) + 𝜌𝜌𝐿𝐿Δ𝜏𝜏0
(𝑖𝑖)                                                 (7) 
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where 𝜌𝜌𝐿𝐿  ∈ (0,1) is the local pheromone evaporation coefficient, and 1 − 𝜌𝜌𝐿𝐿  represents the 
pheromone residue factor. is the initial pheromone value, with 𝜏𝜏0

(𝑖𝑖) as a small negative number when the 
node value is 1, and 𝜏𝜏0

(𝑖𝑖) equal to 0 when the node value is 0. So the expression for global pheromone 
update strategies is  
                                                            𝜏𝜏𝑥𝑥,𝑦𝑦

(𝑖𝑖) = (1 − 𝜌𝜌𝐺𝐺)𝜏𝜏𝑥𝑥,𝑦𝑦
(𝑖𝑖) + 𝜌𝜌𝐺𝐺Δ𝜏𝜏𝐺𝐺

(𝑖𝑖)                                               (8) 

                                           Δ𝜏𝜏𝐺𝐺
(𝑖𝑖) = {

𝐹𝐹𝐺𝐺
(𝑖𝑖), (𝑥𝑥, 𝑗𝑗) ∈ Global optimal solution

𝐹𝐹𝐼𝐼
(𝑖𝑖), (𝑥𝑥, 𝑗𝑗) ∈ Iterative optimal solution
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                                  (9) 

where 𝜌𝜌𝐺𝐺  ∈ (0,1) denotes the global pheromone evaporation coefficient, while 1 − 𝜌𝜌𝐺𝐺  represents the 
pheromone residue factor. The solution denoted by the notation 𝐹𝐹𝐺𝐺  refers to the global optimal solution, 
and 𝐹𝐹𝐼𝐼

(𝑖𝑖) signifies the iterative optimal solution. The coevolutionary mechanism, a recent evolutionary 
concept based on coevolution theory, acknowledges organism diversity, and stresses the 
interdependence between organisms and their environment during evolution. This mechanism applies 
coevolution theory to establish competitive or cooperative relationships among multiple populations, 
enhancing optimization performance through their interactions [11]. By emphasizing the influence of 
different subpopulations on each other and their coevolution, the coevolution mechanism is incorporated 
into the ACO algorithm, enabling information exchange between distinct subpopulations.  

3.2.  GACO 
The GACO approach incorporates two genetic operations: crossover and mutation. To prevent the 
disruption of useful patterns or building blocks in the genetic algorithm by these operations, a Linkage 
Strength-based learning mechanism is employed. In the beginning of an operation known as a two-point 
crossover, the genetic algorithm analyzes the pheromone value that exists in both cities to determine the 
linkage strength that exists among nearby genes on the parent chromosome. Subsequently, it selects 
crossover and mutation points based on linkage strength through a roulette method. Then, a random 
limit is constructed that lies between the minimum and maximum possible values for the chromosomal 
linkage strength. The linkage strength between exchanged chromosome genes is categorized as either 
strong or weak. Strong links form subroutes, while weak links represent individual cities. Future 
generations of chromosomes are constructed accordingly [12]. 

In addressing the TSP problem, both ICMPACO and GACO have demonstrated their effectiveness 
in discovering optimal solutions. However, the specific performance of each algorithm may depend on 
the size and complexity of the problem being solved. In summary, the relationship between ICMPACO 
and GACO stems from their utilization as ACO algorithms to identify optimal solutions for the TSP 
problem, achieved by modifying the pheromone trail according to the actions of artificial ants.  

4.  Results 
To demonstrate that the optimized ACO algorithm outperforms the traditional ACO algorithm in solving 
the TPS problem, computer simulations are used here to demonstrate. In this study, the efficacy of the 
ICMPACO method is assessed using eight Traveling Salesman Problems (TSPs) sourced from the 
TSPLIB standard library. To determine the distance between any two cities, Euclidean distance is 
employed, in line with the TSPLIB's attributes, and the resulting values are rounded to the nearest whole 
number.To determine how well the proposed ICMPACO algorithm performs in terms of enhancement, 
it is compared both to the original Ant Colony Optimization (ACO) algorithm and to an improved 
version of ACO that includes group intelligent local search. This is done so that we can evaluate the 
effectiveness of the ICMPACO algorithm (IACO). 

In order to evaluate how well the proposed ICMPACO performs in terms of optimization, it is 
compared with the standard Ant Colony Optimization (ACO) method as well as an upgraded version of 
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ACO called an improved ACO that includes group intelligent local search (IACO) [8] with the 
parameters shown in Table 1. 

Table 1. values for parameters. 

Algorithms ACO IACO IMPACO 
Ants(𝐾𝐾) 30 30 30 

Pheromone factor(𝛼𝛼) 1 1 1 
Heuristic factor(𝛽𝛽) 0.5 0.5 0.5 

Volatility coefficient(𝜌𝜌) 0.1 0.1 0.1 
Pheromone amount(𝑄𝑄) 100 100 100 

centration( 𝜏𝜏𝑖𝑖𝑖𝑖(0)) 1.5 1.5 1.5 
Maximum iterations(𝑇𝑇) 200 200 200 

Table 2. Experimental results. 

Instances Algorithms Optimal 
value 

Maximum 
value 

Minimum 
value 

Average 
value 

Variance 

dantzig42 
ACO 
IACO 

ICMPACO 
699 

726.2402 
737.1451 
718.8354 

707.7596 
704.6353 
703.1199 

718.5473 
717.58993 
711.02192 

9.2403 
16.2549 
7.8578 

eil51 
ACO 
IACO 

ICMPACO 
426 

455.8169 
452.6667 
439.9814 

443.3749 
440.6427 
429.8871 

449.91115 
446.17787 
435.24398 

6.221 
6.012 

5.0472 

berlin52 
ACO 
IACO 

ICMPACO 
7542 

7757.4 
7681.5 
7613.7 

7663.6 
7589 

7548.6 

7687.21 
7622.4 

7621.36 

46.9 
66.25 
37,55 

cil101 
ACO 
IACO 

ICMPACO 
629 

708.2028 
702.5375 
686.246 

683.7806 
680.3677 
668.236 

694.7517 
692.7951 
677.4336 

12.2111 
11.0849 
9.0050 

pr107 
ACO 
IACO 

ICMPACO 
44303 

46585 
46292 
46103 

46124 
45690 
45649 

46414.6 
46050.3 
45970.6 

230.5 
301 
227 

ch130 
ACO 
IACO 

ICMPACO 
6110 

6473.2 
6467.8 
6273.5 

6311.2 
6307.5 
6183.4 

6399.8 
6384.83 
6235.95 

81 
80.15 
45.05 

kroA200 
ACO 
IACO 

ICMPACO 
29368 

37062 
36849 
36134 

32041 
31974 
31267 

33763 
32871 
32086 

132.5 
127.3 
136.4 

rat783 
ACO 
IACO 

ICMPACO 
8806 

11508 
11352 
10891 

9932 
9453 
9229 

10791 
9804 
9672 

70.4 
82.1 
85.3 

Table 2 displays the results of experiments that were conducted in order to solve classic TSP 
examples such as dantzig42, eil51, berlin52, eil101, pr107, ch130, kroA200, and rat783 utilizing the 
fundamental ACO method, the IACO algorithm, and the suggested ICMPACO algorithm. In considering 
the results presented in Table 2, it is clear that the optimization overall quality of the three algorithms 
and their efficacy in dealing with the TSP situations are comparable. The ICMPACO method 
consistently produces the best optimization values for those common TSP cases. This is especially true 
for berlin52, eil51, and dantzig42. When compared to the ideal values of 7542, 426, and 699, the results 
that are produced by the ICMPACO method are 7548.6, 429.8871, and 703.1199, respectively. These 
numbers are near to being optimal. It would appear from this that the ICMPACO method has a greater 
capacity for optimization than either the ACO or IACO algorithm when it comes to the solution of these 
common TSP instances. In addition to this, the ICMPACO algorithm produces the highest average value 
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in terms of the mean value, demonstrating its more pronounced advantage in terms of optimization 
performance [3]. 

Similarly, to prove the validity of GACO, the TSP problem was selected as shown in Table 3, with 
the parameters shown in Table 4. 

Table 3. The problem of choice. 

Name Size (eities) Best-known cost 
ulysses16 16 74.1088 

gr24 24 1272 
Ei151 51 429.9835 
st70 70 678.5973 
cil76 76 545.3873 

kroA100 100 21285 
Table 4. Selected parameters. 

Psize P.crossover Pmutation Max_num_trials β γ p q ρ 
50 0.85 0.05 1,000,000 2 0.1 0.1 0.90 0.1 

Table 5. Experimental results. 

Problem   Best-tour length  Best-tour length  
 length RPD (%) length RPD (%) 

ulysses16 73.9877 - 0.0016 74.0567 -0.0931 
gr24 1272 0 1274.5 0.2 
E151 429.9835 0 431.1503 0.3 
st70 678.5973 0 682.7469 0.6 
eil76 545.3873 0 548.3518 0.5 

kroA100 21285 0 21723 2 
In Table 5, "cost" stands for the distance traveled to reach the answer, whereas "opt" indicates the 

optimal cost that is currently known. It is important to note that the Relative Percentage Difference (RPD) 
for the experiments conducted on Ulysses16 is negative, indicating that the optimal tour identified by 
our solution is shorter than the previously known optimal solution [7]. 

Throughout the course of the simulation tests, a number of different parameter values for individual 
functions were investigated and tinkered with in order to ascertain which provided the best starting point 
for these parameters. The ICMPACO method, according to experimental results, consistently produces 
the best metaheuristic values for those common Travelling salesman problem instances, particularly 
berlin52, eil51, and dantzig42. ICMPACO beats both the fundamental ACO and IACO algorithms in 
terms of optimization capability for these common TSP situations, achieving near-optimal results in 
contrast to ideal values. Moreover, ICMPACO offers the best average value in terms of mean value, 
highlighting its specific performance advantage in optimization. Overall, the results of this work 
emphasize ICMPACO's capacity to handle challenging optimization problems by emphasizing its better 
optimization skills over conventional ACO algorithms in tackling TSP problems. The suggested 
approach for GACO combines genetic algorithms and ant colony optimization, with each member of 
the GA acting as an ant in the ACO. The identification of the genetic algorithm's basic components and 
the direction of the choice of genetic action locations are both successfully accomplished using 
pheromone information. By actively guiding the methodology and constricting the TSP search area, the 
ACO-based building block learning mechanism enables the GA to avoid frequent disturbances to its 
basic components caused by crossover and mutation operations. Data collected for several TSP scenarios 
demonstrate this method's capacity to deliver high-caliber results. The underlying ideas for such 
approach may pave the way for novel methods to improve GA performance, allowing for more precise 
and effective genetic manipulation. 

5.  Conclusion 
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In conclusion, the purpose of this research was to use computer simulations to demonstrate that the 
optimized version of the ACO algorithm, known as ICMPACO, is superior to the classic version of the 
ACO algorithm when it comes to addressing TSP issues. Eight different TSP instances taken from the 
TSPLIB standard library are used in the analysis to see how successful the ICMPACO technique is. In 
order to determine the distances between cities, the Euclidean distance is employed, which is consistent 
with the features of the TSPLIB. The values that are calculated using this distance are then rounded to 
the nearest whole number. Comparisons are made between the improvement capabilities of the proposed 
ICMPACO algorithm and those of the traditional ACO as well as an improved version of the ACO that 
makes use of group intelligent local search (IACO).  
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