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Abstract. Minimal invasive surgery (MIS) is the mainstream trend in developing surgical 

technology. As the endoscope is a significant tool in the surgical process, whether it can track 

the inner cavity and realize accurate real-time 3D reconstruction has a vital impact on the smooth 

progress of MIS. However, there are still problems in the endoscopic environment, such as severe 

image distortion, the effect of lighting conditions, and the inability to extract lumen textures. 

Orinted fast and rotated brief simultaneous localization and mapping (ORB-SLAM) is currently 

a relatively advanced simultaneous localization and mapping (SLAM) method with better 

performance. The ORB-SLAM-based endoscope 3D reconstruction method can improve 

performance and overcome the challenge of endoscope 3D reconstruction. This paper will first 

introduce several existing endoscope 3D reconstruction methods based on ORB-SLAM and 

analyze the limitations and issues of these methods through their experimental results. Then the 

paper will explore the solutions to the defects in this method from other methods and compare 

the characteristics and the result of experiments. Secondly, through the summary of the above 

methods and the introduction of the integration of the ORB-SLAM-based methods and other 

current advanced technologies, the future development trend and huge development potential of 

ORB-SLAM-based endoscopic 3D reconstruction are introduced. This paper will be of profound 

affection to further improve the optimization and application of the ORB-SLAM-based 

endoscope 3D reconstruction method. 

Keywords: orinted fast, rotated brief simultaneous localization, mapping, endoscope, 3D 

reconstruction. 

1.  Introduction 

Compared with the general robot, the equipment in MIS usually has no extra sensors and distance-

measuring tools. It is harder to utilize SLAM in a Monocular handle camera like an endoscope camera 

than in others because of its high-velocity movement, bad stability and complex working environment. 

Due to the effect of circumventing external interferences such as optics and magnets, increasingly 

scholars have committed to the research about SLAM-Based technology in tracking, relocalization and 

3D reconstruction. 

In 2007, the image from the monocular endoscope was processed by Wu et al. with a proposed 

structure from motion (SFM) method [1]. However, this method is not adapted to real-time 3D 

reconstruction scenarios because it needs to handle offline data. In 2006, Mountney et al. utilized 

simultaneous location and mapping from the visual sensor (VSLAM) in MIS [2]. They applicated and 

extended the basic structure of extended kalman filter SLAM (EKF-SLAM) from Davison to MIS [3]. 

Proceedings of  the 2023 International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/12/20230300 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

78 



In 2009, the possibility of using EKF-SLAM in a monocular endoscope was researched by Grasa et al., 

who proved that the 3D reconstruction of the dense map only by the monocular endoscope is 

dramatically challenging under non-rigid and texture-lacking conditions [4]. In 2010, Mountney and 

Yang proposed learning the motion paraments of the periodical changes, like hepatic, to improve the 

estimation of VSLAM [5]. In 2011, Rublee et al. presented an ORB feature extraction algorithm [6]. 

This method exceeded scale-invariant feature transform (SHIFT) in computing velocity and robustness, 

which solved the problem where Binary Robust Independent Elementary Features (BRIEF) was not 

rotation invariant [7]. In 2013, Lin et al. applied the parallel tracking and mapping (PTAM) algorithm 

proposed by Klein et al. to stereoscopic endoscopy [8, 9]. PTAM is the first system based on keyframes. 

SLAM technology saw a breakthrough when it was initially separated into front-end and back-end 

concepts, paving the way developing numerous following SLAM systems. In 2015, Mur-Artal raised 

the ORB-SLAM system. Figure 1 organizes the ORB-SLAM system framework [10]. The system 

inherits the PTAM framework and uses ORB binary feature points to quickly and reliably complete 

positioning. The ORB-SLAM system is a proven advanced SLAM system. Combining many new 

technologies, such as the ORB algorithm, local keyframe mapping, establishment of covisiblility graph, 

word bag algorithm relocation, etc., the system can robustly track the camera and accomplish the 3D 

reconstruction by extracting feature points. Based on ORB-SLAM, ORB-SLAM2 proposed in 2017 

added a new global optimization after the local map optimization of loopback detection [11]. ORB-

SLAM3 manages a series of sub-maps, which share a bag of words, enabling operations such as 

relocation and loopback [12]. Figure 2 sorts out the timeline proposed by ORB-SLAM.  

 

Figure 1. ORB-SLAM system overview. 
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Figure 2. The timeline of ORB-SLAM (The same color means related research direction). 

2.  Applications of ORB-SLAM in endoscope 3D reconstruction 

With the development of computer vision, algorithms based on computer vision have gradually attracted 

the attention of researchers because, with the assistance of such algorithms, endoscope position tracking 

and 3D reconstructions in three-dimensional space can be successfully performed. However, in MIS, a 

single hand-held camera (such as an endoscope camera) is usually used, so some of the proposed 

methods [1] are unsuitable for MIS.  

To track the position of the endoscope in MIS scenarios and provide real-time 3D reconstruction 

based on the image provided by the monocular endoscope as the only input, Mahmoud et al. proposed 

an endoscope 3D reconstruction method based on ORB-SLAM, achieving by following methods [13]. 

(1) Tracking: Endoscope position is tracked in every live video frame. (2) Mapping: Keyframes are 

screened and matched between them; map point 3D positions and keyframe 3D poses are computed by 

bundle adjustment (BA). The system will initially over-initialize map points and keyframes, and only 

keyframes with more information are retained after the second round of strict screening. In order to keep 

the scale and rotation constant, the method initializes the map in detecting ORB features of different 

image scales (3) Endoscope relocation: For possible situations of abduction cameras, this method stores 

all keyframes in the Bag, which has Binary Words, index database combined with the covisibility graph. 

As long as valid endoscopic poses are found, the system responds quickly and resumes tracking. In 

addition, the method further densifies the map. The initialization process is prolonged to the second 

stage, where a cross-correlation guided by epipolar geometry is applied to all unmatched ORB points in 

the keyframe to reconstruct the image's sparse region as a semi-dense map. 

The performance of ORB-SLAM in 3D reconstruction and the error of the reconstructed map is 

evaluated through experiments. The results show that the endoscope tracking based on ORB-SLAM is 

high quality, and the accuracy and robustness are also very good. Although the number of matching map 

points is very small, the system can still construct a sparse map, and the results of the pig lung experiment 

also show that the system has a certain ability to estimate motion trajectories. Even if the endoscope is 

removed and replaced during observation, the system can be repositioned within 3 seconds. To assess 

the error of the 3D reconstruction point cloud, the researchers used computed tomography (CT) as the 

ground standard to evaluate the system's reconstructed map. Its root mean square error (RMSE) reached 

3-4.1 mm. Figure 3 shows the reconstructed map obtained after the experiment [13]. In (e-f), the 

diaphragm’s back-and-forth movement can be estimated because of the pig’s breathing. 
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This study has demonstrated that this tuned ORB-SLAM system is a robust method which means 

that it can be used in monocular endoscope tracking and 3D scene reconstruction with images acquired 

by the endoscope as the only input. However, simultaneously, some limitations of ORB-SLAM have 

also been discovered through research. Due to the following reasons, ORB-SLAM-based endoscopy 

cannot detect repeatable points on some soft organs, and many regions cannot track map points in some 

scenes, making 3D dense reconstruction challenging [14]. (1) Because of the limitation of monocular 

vision, the image distortion of the endoscope is serious. (2) The surface texture of the organism is limited, 

which means that the feature points available for the system to scan and extract are limited. (3) 

Endoscopes often use cold light and are highly susceptible to other uneven lighting conditions. 

 

Figure 3. The performance of ORBSLAM [13].( (a–c) images with reprojected map points (green 

points). (d) Reconstructed map points (red) and keyframes (endoscope tip trajectory). (e–f) Breathing 

motion, current endoscope location is shown as a green rectangle. (e) and (f) during inhale and exhale, 

respectively. (Color figure online) ) 

To solve the problems in the above studies, Chen et al. proposed an improved method [14]. Matching 

adjacent frames using local features for endoscope pose estimation and keyframe selection. In improving 

the ORB-SLAM system, the system uses the PnP algorithm to match the ORB features to estimate the 

endoscope pose and further optimize the keyframe pose; uses triangulation and Bayesian probability 

methods to measure depth reliability; uses filters to reduce noise. In terms of tracking, through 

preprocessing, the researchers first integrated the fisheye model into the system and eliminated distortion 

by checkerboard calibration; used grey levels to distinguish target areas; removed features not in the 

grey level of the target area to obtain local features of endoscope images. Regarding dense depth map 

estimation, researchers are inspired by  to transform the depth prediction problem of reference frames 

into a Bayesian probability estimation problem and reduce the depth map noise through smoothing filters 

[15]. Figure 4 respectively shows (a) the original image, (b) the reconstruction of binocular d and (c) the 

reconstruction of the improved method [14]. Experimental results on the data set collected by the liver 

in vitro show that this method can retain the overall effectiveness of the results and obtain a good dense 

point cloud effect even in dim light conditions. The researchers also conducted comparative experiments 

using Hamlyn in vivo videos, further verifying the feasibility and effectiveness of improved ORB-

SLAM in monocular endoscopy and the superiority of reconstructed point clouds compared with the 

binocular method in density and smoothness. 
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Figure 4. The reconstruction result of the Hamlyn in vivo videos [14]. ((a) Presents the original images. 

(b) shows the point clouds construct by a binocular method proposed in Wang’s method [15]. (c) shows 

the results from our method.) 

However, in the process of this research, due to the improvement of the algorithm, the complexity of 

depth estimation is high, and the number of calculations increases. Depth estimation and smoothing also 

require GPU acceleration and thus cannot provide real-time 3D reconstruction. 

Other methods optimize the ORB-SLAM system from different perspectives.  The following two 

methods improve the method in terms of algorithm and hardware, respectively. 

Nader et al. proposed an adjustment method for the ORB-SLAM system, which computes dense 

matching Between parallel cluster frames by a variational method combining zero-mean normalized 

cross-correlation and a gradient Huber norm regularizer [16]. Experiments show that there is indeed a 

gain in computing time after adjustment. Huo et al. made a breakthrough in the 3D reconstruction of 

ORB-SLAM from a binocular endoscope [17]. The disparity map is obtained by the traditional SGBE 

method. Real-time matching is used to obtain the depth sequence, and Stereo Net is used to rebuild the 

left and right image sequences of the binocular endoscope. The left-view RGB-D camera's map is 

simultaneously based on the image sequences. It not only fixes the issue that conventional binocular 

SLAM cannot achieve real-time dense 3D reconstruction, but it also extracts the greatest amount of 

physical data from the image to guarantee the processing speed. The experiment in pig stomachs shows 

that this method improves the computational efficiency and point cloud density while basically fulfilling 

the real-time requirements. The RMSE is only 1.620mm lower than the one in the above methods. It can 

be inferred from Table 1 that the adjusted method makes the calculation method drop significantly. In 

the 3D reconstruction image in Figure 5, the point cloud on the binocular reconstruction image is less 

discrete. 

Table 1. The performance of Nader’s method [16]. 

Image Resol. 720×288 960×260 

Cluster Selection (s) 0.17 0.21 

BA (s) 1.3 2 

Inverse Depth Discretiz (s) 0.00036 0.0039 

Cost Volume (s) 3.4 5.2 

Variational Minimiz. (s) 6.2 8.4 

Depth maps realignment (s) 0.38 0.47 
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Figure 5. The result of Huo’s method [17]. 

The relevant information about the four methods mentioned above is summarized. These methods’ 

performance indicators and characteristics are compared, as shown in Table 2, which shows that the 

subsequent enhanced algorithm performs better in RMSE and non-rigid conditions, but it compromises 

real-time tracking and relocation capabilities and is subject to certain environmental constraints, such as 

light source conditions. 

Table 2. Summary of the ORB-SLAM-based endoscope 3D reconstruction.  
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ORB-SLAM BA 3s ✓  ✓ -  ✓ 
3-

4.1 

Improved ORB-

SLAM 
BA - ✓  - - -  - 

Dense SLAM 

Method 
BA - ✓  - 

effect by 

shadow 

small 

deformation 
 1.10 

Binocular Method StereoNet -  ✓ - white light   1.26 

3.  Future works and potentials 

The ORB-SLAM system is a powerful tracking and mapping tool with excellent relocalization abilities. 

Compared with other SLAM algorithms, ORB-SLAM is more suitable for extracting physical 

information in biological lumens, but it still has some limitations to be solved in future works. To 

improve the capability of scanning and extracting features on organisms with limited texture, the current 
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methods either filter the keyframes and only keep the keyframes with plenty of information, which 

makes the available matching map points less and affects subsequent dense 3D reconstruction, or use 

complex algorithms to optimize keyframe poses, and use more complex methods to extract denser point 

clouds from endoscopic images, which increases the number of calculations and even makes the system 

unable to achieve basic real-time reconstruction. Therefore, in future works, how to balance the number 

of keyframes and computing time while ensuring the performance of system feature extraction is 

overwhelmingly significant and indispensable. Currently, ORB-SLAM 2 with binocular cameras and 

ORB-SLAM 3 with fisheye cameras have been proposed, providing new possibilities for the further 

optimization of ORB-SLAM in the 3D reconstruction of endoscopes. Besides, the researchers also 

opened up new directions for the improvement of ORB-SLAM from the perspective of technology 

combination, such as using deep learning and neural network like convolutional neural network (CNN) 

to strengthen the information processing ability and Enable faster real-time response; using laser 

marking to generate more features on lumen surfaces to alleviate data scarcity; Utilizing the 

characteristics of ORB-SLAM with small error to improve the position accuracy of augmented reality 

(AR) annotations, labels, 3D model alignment and other information during surgery [18, 19]. The 

examples of the combination between the above technologies and the ORB-SLAM show that the system 

has broad development space and great potential. 

4.  Conclusion 

In the paper, the high feasibility of utilizing this method in endoscopic 3D reconstruction is illustrated 

by an overview of the origin and development of ORB-SLAM. This paper mainly introduces two 

existing ORB-SLAM-based endoscopic 3D reconstruction methods and analyzes the limitations and 

issues to explore the solutions in other reconstruction methods. In addition, two other methods are listed 

from the aspects of algorithm and hardware, which provide a research direction for further improving 

the 3D reconstruction method based on ORB-SLAM. The paper also compares some performance 

indicators such as estimation, relocalization, non-rigid deformation, real-time, RMSE etc. of the four 

methods and, more intuitively, show some differences between the methods. Then, by discussing the 

advantages and disadvantages of several methods mentioned in the article, the following conclusions 

are drawn: It is currently difficult to balance calculation time and 3D reconstruction quality in applying 

ORB-SLAM in endoscopic 3D reconstruction. In order to realize real-time reconstruction, it can only 

be filtered multiple times to remove keyframes with large uncertainty and preserve the one that contain 

more information. Although the calculation time is reduced, the reconstruction scope is shrunk. In order 

to improve the reconstruction accuracy and expand the range, more complex algorithms need to be used 

to obtain denser point clouds and reduce the degree of dispersion of the point on the reconstructed 3D 

model. Although dense 3D reconstruction is achieved this way, the real-time function is sacrificed, and 

even the image must be processed offline. Finally, from the aspect of technology integration, it is 

clarified that utilizing ORB-SLAM in endoscope 3D reconstruction has a high degree of matching with 

the current advanced technology such as CNN, laser marking, AR etc., which means that it has the 

possibility of iteration and further improvement and has broad application scenarios and great 

development potential. After continuous research and improvement, the endoscope 3D reconstruction 

system based on ORBSLAM will achieve smaller errors, faster response and stronger robustness. And 

through integration with other technologies, the system will also achieve more functional expansion, 

which greatly facilitates the use of surgeons. 
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