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Abstract. Unsteady flow is the dominant flow state in real life; thus, the simulation of it is of
vital importance, especially in engineering, for example, the flutter or buffeting of the aerofoil.
In the past decades, the progress in computational science greatly paced the development of
computational fluid dynamics (CFD), providing powerful tools for simulating unsteady flow
via numerical methods. However, the unsteady flow state depends on more variables than a
steady flow, including the external conditions in different time moments and the flow's
properties that vary with time. The calculation is still too massive, even using CFD. Therefore,
CFD algorithms with higher efficiency and less reduction in accuracy are still needed to
optimize the technique. This paper reviews the main CFD computational methods that have
been maturely developed and proven effective, including direct numerical simulation (DNS),
classic turbulence models and reduced order model (ROM), illustrating the main mechanisms
and displaying their features. The paper also sheds light on these methods' latest research
progress.

Keywords: computational fluid dynamics, numerical methods, unsteady flow simulation.

1. Introduction
Unsteady flow is the most common flow state in the natural world and practical engineering. The main
causes for unsteadiness are unsteady boundary conditions and flow instability, while the variation of
external forces and energy contributes [1]. Compared with a steady flow, the behaviors of flow or fluid
micelles depend not only on the current flow state and boundary condition but also on the flow states
in former moments, including the external conditions and the state variables, which is more
complicated and requires more calculation resources. The research methods of unsteady flow include
theoretical models, numerical simulation and wind tunnel test [2]. While the theoretical model strongly
relies on linear assumptions, which restricts its accuracy and application, and wind tunnel test requires
high cost and cumbersome operations, numerical simulation, often carried out through computational
fluid dynamics (CFD) thanks to advances in computational science, becomes the main approach to
study and predict the behaviors of a fluid field. However, direct numerical methods often require
plenty of computational resources and data storage capacity, while unsteady flow adds an extra
dimension and lowers calculation efficiency. Besides, unknown phase and integration errors can cause
serious instability when predicting the behavior and even lead to incorrections [3]. Furthermore,
approximations are usually introduced to model the deforming fluid–structure boundary, which may
violate the required consistency or conformity conditions between the fluid and solid elements and
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cause incorrect modeling [4]. Therefore, more efficient and precise models must be developed to
facilitate CFD in unsteady flow simulations. This paper presents the main calculational approaches in
CFD that have been maturely applied and updates the research process and new appliance of the
methods. In the paper, � stands for a general fluid field variable, for example, velocity, potential or
temperature, and the variables in bold represent vectors or matrixes.

Generally, all the numerical methods are based on one or several governing equations, which
illustrate the core laws to which the flow conforms. N-S equations are the essential ones that apply to a
wide range of flow types. Based on the conservation laws of mass, momentum and energy, N-S
equations can be expressed in an integral form:
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where � is the density of the fluid, � = ��, ��, ��
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is the velocity of the mass point, � =
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�
is the normal vector of the fluid at the point, � is the fluid pressure, �0 is the total fluid

internal energy, ��� is the stress article, � is the heat conduction coefficient, � is the fluid temperature,
and � is the kinematic coefficient of viscosity. The equations apply to continuous medium and Newton
fluid at normal pressure and temperature without body forces considered. On account of that, there are
Euler equations for inviscid fluids:
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And full potential equations for irrotational, isentropic flow are also widely used to simulate their
solutions in certain conditions:

1
�2 ��� + �� ∇�

2
= 1 − ��

2 ��� + 1 − ��
2 ��� + 1 − ��

2 ��� − 2������� − 2�������

−2�������

�2 = � − 1 �0 −
1
2

∇�
2

− �� , ∇� = ��� + ��� + ���

where � represents potential, � is the sound velocity, �0 is the stagnation enthalpy, � is the ratio of
specific heat and ��, ��, �� are the Mach numbers in the three directions.

2. Direct numerical simulation (DNS)
With the governing equations established in the last chapter, most of which are in complex ODE or
PDE forms and cannot be solved analytically, CFD provides a tool to simulate their numerical
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solutions, so the main task of DNS is to give the solutions. Two parts of the work are discussed here,
including spatial discretization and time discretization. Three spatial discretization methods are
introduced, including finite difference method (FDM), finite volume method (FVM) and finite element
method (FEM) and the time discretization methods are displayed in three types: time domain marching
method, frequency domain harmonic method and time domain collocation method [1]. As the two
discretization aspects are displayed individually, only steady flows are discussed in the spatial
discretization part, for unsteady flow can be seen as steady at every unit time interval.

2.1. Spatial discretization

2.1.1. FDM. FDM is a classic method for solving differential equations numerically, simply and
straightforwardly. It subdivides the definitional domain into meshes, with the information of functions
preserved in nodes and derivatives expressed with difference quotients. Consider a 2D scalar function
��,� = � �, � , with � representing the mesh node in � direction and � representing that in � direction, it
is similar for 3D circumstances. Express � with the Taylor series:
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and it is also true for ��,�+1 and ��,�−1 . It’s easy to derive the following relationships with the Taylor
series:
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Theoretically, any order of derivative can be expressed in any order of accuracy using different
numbers of nodes, making the accuracy of the general simulation vary. Plug the derivatives into the
differential equations using the known boundary conditions, and the value of function � can be solved
at every time step. However, the meshes in FDM should be chosen carefully, as some FDM schemes
may lead to unstable solutions with overlarge step sizes. Even though some iteration methods,
including successive over relaxation (SOR), were introduced to accelerate convergence, FDM still
reveals too much unstableness and restrictions in complex circumstances.

2.1.2. FVM. Instead of differential equations used in FDM, FVM is based on the conservation laws in
each control volume. For a 3D conservation equation in a general form:
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where ��� ��� is a convective term, � is the diffusion coefficient, and � is the source term. Do an
integration with the equation in control volumes and apply the Gauss divergence theorem:
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where � is the area at the boundary of the control volume and �, �, �, �, �, � are respectively short for
east, west, north, south, out and in, which indicate the direction of six different directions around the
central point of control volume P. As � can be expressed as the sum of a constant and a variable of �:
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And �, as well as its derivatives, can be approximated by the value at P (take x direction as an

example) and boundaries of the control volume:
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then the conservation equation can be rewritten as:
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Replace the coefficient of each � with �, and the discretization equation at each control point P can
be expressed with a linear equation:

���� = ���� + ���� + ���� + ���� + ���� + ���� + ��∆� (11)

Adjust the equations in the whole field using boundary equations, and the equations can be solved
as a system of linear equations. It should be noted that Central Differencing Scheme is used in Eq (9),
which owns better precision yet requires a small step length and small difference between flow in
different directions. There are also upwind differencing schemes, hybrid differencing schemes, power-
law differencing schemes and quadratic upstream interpolation for convective kinetics (QUICK),
which mainly vary in different considerations of convection and diffusion.

As FVM is based on the conservation within a volume, its accuracy is less dependent on the
volume size than FDM, but the solutions near the boundaries are not well-defined. Besides, the linear
model used in discretization reduces its effectiveness in nonlinear dynamics. Given its drawbacks,
FVM is still widely applied in commercial CFD analysis systems.

2.1.3. FEM. As a mature method that has been fully developed, FEM has been applied in current
business software. For a governing equation u(x)=0, it can be expressed in integral form according to
variation calculus:

� � � ���� = 0� (12)
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where � represents a field and � is the function of space variable � defined in �. It can also transform
into a weak integral form via integration by parts, which is more convenient for the following analysis.
In FEM, the field is divided into finite element areas, often line segments in 1D, triangles in 2D and
tetrahedrons in 3D cases. � is expressed as the sum of approximation functions � � , which can be
approximated by the linear combination of a series of primary functions ��

� :

� = � � �� (13)

� � = � ��
� ��

�� (14)

where � stands for each element, and � walks through all the nodes of the element. Approximate the
primary function ��

� with linear functions, so ��
� satisfies:

��
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��
� �� � = �� + ���� � + ���� � + ���� � (16)

Thus, for each element, ��
� can be solved as the coefficients of each � � in the weak integral

FEM equations. Thus, the equations turn into a system of linear equations that can be solved by Gauss-
Jordan elimination or nonlinear equations that can turn into linear ones via Newton-Raphson or other
linearization algorithms.

2.2. Time discretization

2.2.1. Time domain marching method. One way to tackle unsteady flow problems is to treat the flow
as steady flow and calculate the target function u at the beginning moment. Then, the value of u at any
moment along the timeline can be given using the initial value and the values calculated in the former
moments. Generally, the time discretization can be expressed as:

���

��
= 1+� ��+1−�� +� ��−��−1

∆�
(17)

where �� is the value at the �th time step, and � equals different constants in different discretization
schemes, making the accuracy and stability vary. However, the inverse matrix with a high order is
needed when solving the governing equations using such discretization, which requires mass
calculation resources. Thus, dual time stepping method was proposed to improve calculation efficiency:

���

�� ����
= ���

��
+ 1+� ��+1−�� +� ��−��−1

∆�
(18)

where � is pseudo time introduced to increase the internal iterations and improve accuracy. Such time
domain marching method applies to any unsteady flow and is easy to understand. However, the
method with higher than 3rd order can lead to divergence and extremely low efficiency because of the
increasing time steps.

2.2.2. Frequency domain harmonic method. In many engineering conditions, the flow is periodical,
offering convenience for developing and applying the frequency domain harmonic method. In a linear
model, any variable � can be expressed as the sum of time-averaged term �� and pulsation term �':

� = �� + �' (19)
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In steady flow circumstances, the time-averaged terms can be solved, transforming the problem
into solving the pulsation terms. In periodical flows, �' is supposed to have the form:

�' �, � = �'� � ����

which is much simpler to tackle with. For models with nonlinearity, unsteady stress terms are
introduced, which will not be specifically discussed in the article.

2.2.3. Time domain collocation method. The time domain collocation method is a general type of time
discretization scheme projecting a variable that varies with time to a series of orthogonal subspaces of
time and solving the steady flow problem in each subspace. One of the most mature methods is time
spectral (TS) proposed by Gopinath [5], which gives the form of subspaces with Fourier
transformation. In this approach, the variables can be solved in each time domain, thus at each
periodically steady state. The method improved by one order of magnitude in calculation efficiency
without reducing calculating accuracy. Apart from TS, other types of time domain collocation methods
exist using different subspaces. Generally, the method applies to periodic flow with low frequency.

2.3. Summary
Direct numerical methods mainly simulate unsteady flow by solving the governing equations
numerically and displaying the value of variables at every moment. Such methods have been widely
applied in various areas, including studying wind flow around buildings, jet tanks, etc. Mature as they
have been, spatial and time analysis optimizations in traditional numerical methods are still needed to
improve calculating efficiency and reduce the CPU required, which points out the main future
direction. Recently, Carlberg et al. proposed a two-stage strategy to reduce the data storage of CFD
using machine learning to achieve dimensionality reduction and dynamic study [6]. Duffin et al.
presented a statistical finite element method via the Bayesian approach to tackle nonlinear internal
waves [7]. Uriarte and co-workers developed a dynamic deep-learning solver for linear PDEs using
FEM [8].

3. Model for turbulence
Showing extreme irregularity and randomness, the turbulence model is one of the important factors
affecting the accuracy of CFD calculation, which is necessary to carry out continuous and in-depth
research [9]. The calculation DNS required in engineering makes the method only realizable for
simple turbulence with low Reynolds numbers, which is far from practical use. To address the problem,
many low- resolution approaches, including Reynolds Averaged N-S(RANS), Large Eddy Simulation
(LES), and Detached Eddy Simulation (DES), arose in succession.

3.1. Reynolds averaged N-S (RANS)
Instead of calculating the pulsation term in all scales, RANS only considers the average information at
all moments. From Eq. (19), the general variable � is discomposed into the sum of �� and �' , with �'

in the following form:

�� =
1
∆� �

�+∆�
� � ���

Replace each variable in the N-S equations with the form above; the general governing equations
of turbulence can be written as:
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where the pulsing of density is omitted and Reynolds stress ��� =− ���'��'� ����� is introduced, making the
equation set unclosed.

To deal with ��� , Turbulent Viscosity Model is developed, with Boussinesq first proposing the
turbulent viscosity assumption in 1887:

−���'��'� ����� = ��
���
���

+ ���

���
− 2

3
�� + � ���

���
��� (21)

where the scalar function �� is the turbulent viscosity and � is the turbulent kinetic energy. Since the
1920s, more and more models have been developed to establish the relationship between �� and the
flow. In 1924, Prandtl proposed the mixing length model, supposing that �� is proportional to ∇��·��2 ,
where �� is mixing length representing the distance fluid micelles have covered before dissipation and
is an experience value. Based on the mixing length theory, many classic models were proposed,
including the SA model by Sparlart in 1992 [10], � − � model by Launder and Spalding in 1974 [11],
as well as � − � model published by Wilcox in 2008 after a three-decade improvement in its original
form proposed in the 1970s [12].

3.1.1. The standard � − � model (STD). STD gives the relationship of turbulent kinetic energy � ,
turbulent dissipation rate � and the flow variables to describe ��:

� = �'2+�'2+�'2� ��������������

2
(22)

� = �
�

��'�
���

��'�
���

� ����������
(23)

�� = ���
�
�2 (24)

where �� is an experience value. As two extra variables � and � are introduced, their transport
equations are used to make the equations closed:
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where �1�, �2� and �� are experience values, �� and �� are the corresponding Prandtl coefficients, ��
does velocity gradient while causing an extra term �� is caused by buoyancy, and �� is a result of
pulsating expansion [13]. Because of the experience values, the STD � − � model mainly addresses
complex and fully developed turbulence, where the Reynolds number is relatively large. The model
has its restriction regarding laminar flow, where viscosity between molecules has more effect than
Reynolds stress, as well as high-rotational or curved flow.

3.1.2. The renormalization group � − � model (RNG). On account of the STD model, Yakhot and
Orzag developed RNG in 1986 [14]:
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with �1�
∗, � and ��� expressed as:

�1�
∗ = �1� −

� 1 −
�

4.377
1 + 0.012�3 , � = 2���

�
�

, ��� =
1
2

���

���
+

���

���
where the effective turbulent viscosity ���� = � + �� reflects a modification in turbulent viscosity
considering flow rotation, and time mean strain rate ��� takes a spatial variation of the extra terms into
account [13]. Therefore, the RNG � − � model performs better in dealing with the curved flow. Apart
from the STD and RNG � − � models, there are also other derivatives of the � − � model, including
the realizable � − � model, and the paper will not go into details about them here.

3.1.3. The � − � model. The � − � model is another approach to describe �� . The experience values
in � − � model greatly depend on the damping function at the viscous sublayer, which may be
inaccurate in flows with a high adverse pressure gradient. The � − � model is free of this problem
with the introduction of specific dissipation rate �, and the model equations are as follows:
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where � is the specific dissipation rate differing from the dissipation rate � , and � , �∗ and �∗ are
closure coefficients. The � − � model significantly enhanced the prediction of many categories of
free-shear-flow, including mixing layer and plane jet, and reduced the influence caused by varied
freestream boundary conditions. Furthermore, in 1992, the SST model was proposed by Menter,
introducing a cross-diffusion term to the � equation above, which achieved the transition and
transformation between � − � and � − � model. At present, SST is more widely used in commercial
CFD engineering.

3.2. Large eddy simulation (LES)
Initially proposed in the 1970s, LES distinguishes the fluid on a large scale from that on a small scale,
establishing a pulsation model to simulate the latter. For a general variable �, LES defines its filtered
form:

�� � =
�

� �' � �, �' ��'�

where � is the filtration function, and � represents the definition area of the fluid. While RANS
establishes the governing equation of the time-averaged term, LES sets governing equations of the
filtered term ��:
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where the extra term ��� is called sub-grid stress describing turbulence behaviors whose scale is less
than the filter scale [13]. To solve ���, eddy model is mostly used:

��� − 1
3

������ =− 2������ �� (32)
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���� �� = 1
2

����
���

+ ����
���

(33)

where �� represents subgrid turbulent viscosity and ���� �� is the stress ratio tensor under the filtered scale
[13].

For the solution of ��, Smagorinsky proposed the most initial model [15]:

�� = � 2���� �� ���� �� ·��2 (34)

�� = min 0.42�, ���
1
3 (35)

where �� is the mixing length of the subgrid and � stands for the distance between fluid micelle and
wall, and � is the control volume. �� is a constant whose value was given as 0.23 and corrected as 0.1,
which shows better simulation performance. Additionally, there’s a subgrid model based on the
renormalization group theory giving ���� = � + �� with the form:

���� = � 1 + � ��
2����

�3 − 100
1
3

(36)

�� = 0.246�
2
3 2���� �� ���� �� (37)

where � is the Heaviside function, and � is the control volume.

3.3. Detached eddy simulation (DES)
Initially proposed in 1997, DES combines RANS and LES to make a compromise between calculation
efficiency and accuracy in turbulence. Through analyzing turbulent flows in a filtered scale, LES is
able to give more accurate simulations. However, more compact meshes are also required in this
method, adding to more calculations and low efficiency, especially at the boundary layer near the wall.
Therefore, RANS is used near the wall, while on a larger scale, LES is applied. According to different
models used in RANS and LES, there’re several DES model equations, and one of the most widely
applied ones is based on the SST model in RANS, proposed by Strelets [16], with the governing
equations expressed as:
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where ��2 is constant, �1 is the Menter's blending function designed to be one in the near-wall region
and zero away from the surface [17]. And the switching function ���� is introduced to control the
equations according to the distance between the control volume and the wall, with the form:

���� = max
��−�

����∆ , 1

where ��−� = �
�∗�

is the length scale of the RANS model, ∆ is the maximum grid distance and ���� is
an experience value.

Although DES performs well in complicated turbulence, it appears to depend on meshes due to the
obscure border between RANS and LES area. A delay factor was introduced to protect the boundary
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layer, and thus DDES was proposed to optimize DES, which made some modifications in the
switching function. Still, take SST-DDES as an example:

����� = max 1 − ����
��−�

����∆
, 1

���� = �1 �� �2
where �2 is similar to �1, a boundary-identification function defined in the SST model.

3.4. Summary
RANS, LES and DES are operated by filtering certain terms in governing equations and expressing the
filtered articles with modeled terms and are widely used in turbulence simulation. Among them,
RANS replaces the details on the time scale with the Reynolds stress term. In comparison, LES
ignores the details on the space scale using the subgrid term. Therefore, the two methods share a
similar form of governing equations, with RANS being more efficient yet less accurate and LES
providing more comprehensive information on fluid fields with denser meshes, leading to more
calculations. Therefore, various methods of mixing RANS/LES were proposed [18], with DES being
the earliest and most widely used one and DDES optimizing DES in terms of influence caused by local
turbulence. At present, this series of methods have been widely applied in engineering. Using SST, Liu
et al. developed a CFD solver for multidimensional compressible flow [19]. Wang et al. provided
references for simulations of high rotational flows by applying a series of models, including URANS,
SST, DES, etc. [20]. Zamiri et al. compared LES, SAS and DES when simulating the film-cooling
process and predicted turbulence and film-cooling effectiveness in a fan-shaped hole [21].

4. Reduced order model (ROM)
An extreme drawback of traditional numerical methods of CFD lies in the tremendous, massive
calculation required, taking up too much calculation resources and computing time. Besides, people
cannot pinpoint the key features of a fluid field by merely solving differential equations. Therefore,
several types of ROM have been proposed since the 1990s to describe major characteristics of the
fluid field with fewer degrees of freedom and thus less calculation, and till now, the model has been
considered another breakthrough in aeroelasticity.

4.1. ROM based on system identification
This type of ROM establishes the reflection between the input and output data using mathematical
approaches. Some representative theories include the Volterra series, linear autoregressive moving
average (ARMA), radio basis function (RBF) neural network, etc. Due to the limited space, only the
first one will be extended in detail.

The continuous Volterra series can be expressed as:

� � = �0 + 0
� �1 � − �1 � �1 ��1� + … 0

�
0
� �2 � − �1, � − �2 � �1 � �2 ��1��2��

+ 0
� … 0

� �� � − �1, …, � − ���� �=1
� � �� ����

(40)

while the discrete form reads:

� � = �0 + �1=0
� �1 � − �1 � �1� + �1=0

�
�2=0
� �2 � − �1, � − �2 � �1 � �2�� + …

+ �1=0
� … ��=0

� �� � − �1, …, � − ���� �=1
� � ���

(41)

where � � represents the input while � � represents the response, � = 0,1,2, … is the discrete-time
variables, and �� is the k-order Volterra operator. In practical use, only a 1- or 2-order Volterra
operator is sufficient to precisely describe the characteristics; thus, it’s not hard to obtain the Volterra
kernel �� � .
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4.2. ROM based on feature extraction
The core theory of this kind of ROM is to seek a group of low-dimensional subspaces on which flow
behaviors in high-dimensional space can be reflected to reduce the complexity of the fluid field and
describe and predict the variables in the field. To construct the subspaces, a great amount of data has
to be collected, and the typical methods include the Koopman operator, Proper Orthogonal
Decomposition (POD) and Dynamic Model Decomposition (DMD), with the latter two introduced in
detail as follows.

4.2.1. Proper orthogonal decomposition (POD). Dating back to the K-L transformation proposed in
the 1940s, POD extracts a series of snapshots as samples and seeks orthogonal subspaces with the
lower order to analyze the key characteristics in the fluid field. Consider a series of snapshots in �
moments � �, �� , discomposing each of them into the sum of time-averaged term �0 � and pulsation
term �' �, �� , while �' �, �� can be expressed with fewer primary functions �� � :

� �, �� = �0 � + �' �, �� , � = 1,2, …, � (42)

�' �, �� = �=1
� �� ��� �� � , 0 < � < � (43)

where �� �� is the �th modal coefficient of each time step ��. Define the snapshot matrix �:
� = �' �, �1 , �' �, �2 , …, �' �, ��

And the primary matrix of the orthogonal subspace:
� = �1 � , �2 � , …, �� �

As the error between the snapshots and the orthogonal subspace should be minimized, written as:

��� �=1
� �' �, �� − ����' �, ��� (44)

So � should be maximized. Through standardizing:

� � =
�=1

�

�' �, �� , � 2 − �(||� �|| − �)

Set �
��

� � = 0, the original problem turns into:

��� − �� � = � (45)

and can be further simplified to an eigenvalue problem:

���� = ��
� = �−�

���
(46)

where

� = � 1 , � 2 , …, � � , � � =

�� �1

�� �2

�� 3
…

�� ��
and � is the eigenvalue matrix. According to the eigenvalues �� , major models can be extracted to
analyze the general fluid field at a low cost.
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4.2.2. Dynamic model decomposition (DMD). DMD is another approach to reducing the order of the
fluid field, which was first proposed by Schmid in 2008 [22]. Based on a linear dynamic process,
DMD establishes two snapshot series:

� = ��, ��, …, ��−�
� = ��, ��, …, ��

with the relationship

� = ���, ���, …, ���−� = �� (47)

One way to approximate � is through a companion matrix. Suppose the following relationships:

�� = �1�� + �2�� + … + ��−1��−� (48)

Thus, there is:

�� = �� (49)

where � is the companion matrix of �. � can be constructed by minimizing the difference between ��
and �=�

�−� ����� , so the eigenvalues of � can be given. Besides, another way to get the eigenvalues of �
is by replacing � with its similar matrix with the lower order. Compared with POD, DMD simplifies
linearity while straightforwardly giving the eigenvalues of the fluid field modal and displaying the
time evolution.

4.3. Summary
Thanks to ROM, more concise and efficient approaches are developed to provide accurate information
on the key characteristics of fluid fields, which is helpful for an in-depth understanding of unsteady
flow and analysis for complex fluid fields with high orders. In recent years, Li et al. presented a more
efficient CFD-based ROM model, improving the robustness of ROM to aeroelastic systems by
applying Genetic Algorithms (GA) [23]. Chen et al. proposed a new ROM model, doing interpolation
in tangent space to the Grassmann manifold to get the POD matrix and using the least squares support
vector machine (LS-SVM) to associate the excitations and POD to establish the ROM, which has great
prospect in predicting hypersonic unsteady aerodynamic flow [24]. Casas et al. combined ROM with
Data Assimilation and machine learning and constructed a Reduced Order Deep Data Assimilation
(RODDA) model containing a neural network trained by data provided by CFD and can predict fluid
fields with higher accuracy [25]. Pant et al. developed a nonlinear projection framework for ROM
based on deep learning, which can predict the future time step without supervision and thus save
plenty of calculations [26]. Aversano et al. applied the technic to flameless combustion, presenting a
ROM digital twin to predict the state variables of chemical reactions based on data compression via
POD [27].

5. Conclusions
The paper reviewed the main computational methods developed since the emergence of CFD. First,
the governing equations were displayed, including the most classic N-S and other derived equations
like Euler and full potential. Other governing equations are also based on different fluid dynamic
conditions, but their core articles are all fluid field variables' spatial and time derivatives. Then the
methods based on three different theories are listed. Actually, with the evolution of CFD in the last 50
years, not all the computational methods are covered in this paper, for instance, finite analytic method
(FAM), grid generation and lattice Boltzmann model (LBM), but the approaches displayed have been
relatively representative. The key idea for DNS is to solve the ODEs or PDEs using numerical
methods, which were divided into spatial and time discretization schemes for discussion. However, as
too much calculation is required in DNS, new methods needed to be applied to reduce computation
complexity with less reduction in accuracy, which facilitated a series of methods represented by
RANS, LES and DES. Furthermore, ROM represents another approach to address CFD problems,
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reducing calculation while giving a better view of the intrinsic qualities of fluid fields. ROM can be
further classified into system identification and feature extraction. There is still great room for
improvement in ROM, especially its combination with machine learning or other AI algorithms. With
the development of ROM, aerodynamic modeling of unsteady flow can be further optimized, which is
vital for the flow control design.
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