
The study of the effect of fluid field above an airfoil under 2D
small disturbance equation method

Weijie Li

Department of Mechanical Engineering, The Ohio State University, Columbus, 43210,
United States

li.10721@osu.edu

Abstract. This review article presents a simulation based on Python for studying fluid flow
over a small disturbance (airfoil) in subsonic and supersonic conditions. The simulation
revolves around the small disturbance equation method, focusing on comparative analysis
under supersonic conditions. Two schemes are applied in different conditions: the central
difference scheme for subsonic flows and the upwind scheme for supersonic flows. Successive-
over relaxation method is also utilized for converging iterative processes. The study focuses on
one influence factor in aerodynamics, the Mach number, and investigates its impact on the
shark angle of an airfoil. The simulation results demonstrate that the Mach number is inversely
proportional to the shark angle of an airfoil, meaning that higher Mach numbers lead to smaller
shark angles of the airfoil. Therefore, the Mach number can be considered a critical parameter
in designing aerodynamic applications. This finding is consistent with prior research,
indicating that the designed method is reliable.
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1. Introduction
Fluid dynamics has been a thriving area of study for many years, and it has significant applications in
various industries, including aerospace, engineering, and environmental sciences. One of the crucial
aspects of fluid dynamics is the study of the flow of fluids over surfaces, such as airfoils. The flow
over an airfoil is a complex phenomenon influenced by various factors such as the airfoil's shape,
speed, and the fluid's properties. Computational fluid dynamics (CFD) can mathematically predict this
effect by solving the Navier-Stokes equations. Studying fluid flow over an airfoil under supersonic
conditions has important applications in some fields, such as aircraft and wind turbine design.
Therefore, a more comprehensive understanding of fluid dynamics in this field can lead to the
development of more efficient and safer realistic applications in life.

The small disturbance equation (SDE) method has proven useful in understanding fluid flow
behavior [1]. Compared with another commonly used model, the full potential equations (FPE)
method, SDE is a relatively simplified version. It is mostly applied in passing through thin
obstructions condition. Kuihao Huang, in his article, compared the SDE method with the Euler method
and found that the former can obtain more accurate experimental results in simulating nozzle flow
because the 1-D Euler method in the experiment is insufficient to perfectly handle 2-D fluid
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simulation [2]. The research mentioned above shows the feasibility and reliability of further in-depth
development of the SDE method.

This article revolves around studying the effect of the fluid field above an airfoil under a 2D small
disturbance equation method and potentially trying to help develop a more accurate and efficient
model for studying fluid dynamics. It will begin with a discussion of the applications of the small
disturbance equation method in fluid dynamics and derivations of the SDE method. Then designing a
2-D SDE model as the foundation to simulate the subsonic and supersonic fluid field around a
disturbance through Python programming. Finally, it will compare the effect results of fluid flow over
an airfoil by changing the velocity of the flow.

2. Realistic applications of CFD models
With advancements in computing power and numerical algorithms, computational fluid dynamics
(CFD) has become an increasingly popular tool in various industries for simulating fluid flows and
analyzing their behavior. Almost all modern fluid mechanical problems can rely on it to find a better
solution because it enables engineers to gain insight into complex fluid dynamics phenomena that
were once too difficult or expensive to study through physical experiments alone. Scott and
Richardson, in their article, shared that food process engineers can utilize CFD to analyze thermal
process convection patterns in containers [3].

The example above can be considered an application of CFD, while the small disturbance equation
method, as one sub-branch of Navier-Stokes equations, also has applications that can be implemented
in real life. Shan listed a few specific analyses of SDE, and flutter analysis is one of the examples [4].
The author compared the experimental flutter speed data collected from the SDE method with the
actual velocity data to find the vibration equation near the wing [4]. This analysis can help improve the
safety hazards caused by vibrations generated by various aerodynamic forces during aircraft flight. To
improve the accuracy of the unsteady aerodynamics model on aircraft, Rozov and his colleagues
introduced the effects of aerodynamic engines into the SDE method [5]. The research focused on the
aircraft flutter behavior caused by engines mounted under the wing and successfully reproduced the
flow effects in the condition of realistic engines [5]. These cases all reflect the effectiveness and
feasibility of continuing the design of the SDE method.

3. Method of SDE derived from the full potential equation
Before knowing how the small disturbance equation method works, it is necessary to understand the
full potential equation method. The full potential equation (FPE) is a nonlinear partial differential
equation (a simplified form of the Navier-Stokes equations) that describes inviscid, incompressible
fluid flow. It assumes that the fluid is irrotational, meaning that the vorticity of the flow is zero. The
small disturbance equation (SDE) is a linearized version of the full potential equation, often used in
subsonic and supersonic flow analysis. The condition here is restricted under two-dimension.

The full potential equation in 2-D is given by:
�2� = 0 (1)

where Φ is the velocity potential, and ∇2 is the Laplacian operator.
Small disturbance theory assumes that the flow perturbation is smaller than the freestream flow [6].

Thus, the velocity potential can be expressed as:
� �, � = �∞ + �(�, �) (2)

where Φ∞ is the freestream velocity potential, and �(�, �) is the small disturbance potential.
Substitute equation (2) into (1) to linearize the full potential equation:

∇2(Φ∞ + �) = 0 (3)
Because Φ∞ is constant, its Laplacian is zero. Then the linearized FP equation becomes:

�2� ≈ 0 (4)
For simplicity, here, set a uniform freestream to flow along the x-axis with speed �∞:

Φ∞ = �∞� (5)
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�∞ = ��∞
��

= �∞ (6)

�∞ = ��∞
��

= 0 (7)
The small disturbance flow velocities can be expressed as:

� = ��
��

(8)

� = ��
��

(9)
For an incompressible, irrotational flow, the velocity potential satisfies:

��
��

+ ��
��

= ��
2

��2 + ��
2

��2 = 0 (10)
Express the equation above in terms of the Mach number �∞:

(1 − �∞
2 ) ⋅ ��

2

��2 + ��
2

��2 = 0 (11)
This is the Small Disturbance Equation (SDE) for an incompressible, irrotational flow with a

uniform freestream Mach number �∞, and it can finally be written in the form:
1 − �∞

2 ⋅ ��� + ��� = 0 (12)

4. Setup of simulation

4.1. Boundary condition
For the boundary condition:

− ��
��

= �∞ + � �' � ≈ �∞�'(�) (13)
The function above is set at the bottom, where �∞ is the magnitude of flow velocity and �'(�) is

the shape of the airfoil [7]. The shape is modeled as a sinusoidal wall in the domain (1,2), while no
obstacle exists in the other range (0,1) and (2,3). The uniform inflow in simulation comes from the
right to left, passing through the obstacle set at the middle bottom. Figure 1 below shows the shape of
the disturbance.

Figure 1. Boundary condition in simulation.

4.2. Two versions of the equation model
There are two different equation models used in simulation:

i. 1 − �∞
2 ⋅ ��� + ��� = 0 (14)
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ii. 1 − �2 ⋅ ��� + ��� = 0 (15)
�∞ is a constant value in the first model, while for the second one, � is a function of �. � here is

the Mach number mentioned above, the flow velocity ratio to the local sound speed. Both model
versions will be conducted to simulate subsonic and supersonic conditions, but the scheme applied to
the subsonic and supersonic is not identical. The central difference scheme is applied to the subsonic
condition here, while the upwind scheme is more appropriate for the supersonic condition.

A central difference scheme is a numerical approximation technique used to estimate a function's
first or second derivative at a given point using the values of the function at neighboring points. It is
called "central" because it uses the values of the function at points symmetrically located around the
point of interest. The basic form is:

�' � = � �+ℎ −�(�−ℎ)
2ℎ

(16)
where h is the spacing between the neighboring points. This approximation has a second-order

accuracy, meaning that the error in the approximation decreases quadratically with decreasing h.
The upwind scheme is usually used to solve advection problems, where a velocity field transports

the solution. It uses the value of the function at the point upstream of the flow direction to approximate
the value at the next time step. The base form is:

��
�+1 = ��

� − �( ��
�−��−1

�

Δ�
) (17)

The upwind scheme ensures that the solution propagates in the correct direction and does not
introduce numerical oscillations or instability that may occur when using central difference schemes
for advection problems. The upwind scheme is now widely applied to second derivatives contributing
to ��� when velocity is over sound speed [8].

4.3. Coefficients of discrete system
Successive-over relaxation (SOR) method will be used here to solve the Laplace equation for the
potential �. This function iteratively updates the potential at each grid point until the error falls below
a certain tolerance level.

For the subsonic condition:
− �0 ⋅ ��,� + (��1 ⋅ ��+1,� + ��2 ⋅ ��−1,� + ��1 ⋅ ��,�+1 + ��2 ⋅ ��,�−1) (18)

For the supersonic condition:
− �0 ⋅ ��,� + [��1 ⋅ ��,�+1 + ��2 ⋅ ��,�−1 − (��1 + ��2) ⋅ ��−1,� + ��2 ⋅ ��−2,�] (19)

Figure 2. Coefficients of subsonic flow. Figure 3. Coefficients of supersonic flow.
Figures 2 and 3 present the coordinate system's corresponding positions of subsonic and supersonic

flow coefficients.
In model i, 1 − �∞

2 ⋅ ��� + ��� = 0:
��1 = ��2 = 1 − �∞

2 , ��1 = ��2 = 1 , �0 = ��1 + ��2 + ��1 + ��2 (20)
In model ii, 1 − �∞

2 ⋅ ��� + ��� = 0:
��1 = ��2 = 1 − � ⋅ � �� � ⋅ � , ��1 = ��2 = 1 , �0 =− ��1 + ��1 + ��2 (21)
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� = 1 − �∞
2 − (� + 1) ∙ �∞ ∙ ��+1,�−��−1,�

2Δℎ
(22)

where � = 0 for the subsonic condition, � = 1 for the supersonic condition, and take � = 1.4 (the
ratio of specific heats) [9,10].

5. Results and comparisons
For model i (2 different flow conditions with fixed � = 0.1):

Figure 4. Subsonic flow with �∞ = 0.3 Figure 5. Supersonic flow with �∞ = �. �
For model ii (a supersonic condition with fixed � = 0.1):

Figure 6.Mach number = 1.3 Figure 7.Mach number = 3.0 Figure 8.Mach number = 4.7
As shown above, the velocity streamlines move horizontally to the right in Figures 4 and 5. They

represent subsonic flow and supersonic flow conditions separately in model i. However, they start
changing the original moving way when they pass through the middle. This is due to the set of small
disturbances within the range 1 to 2. � is the amplitude of the sinusoidal function, and the value of �
will impact the scale of streamlined fluctuations. As shown in Figures 6-8, the comparison is under
fixed β=0.1, changing M values from 1.3 to 4.7. They are under the supersonic flow condition of
model ii. It stimulates the flow effects above the airfoil when the aircraft is accelerating. As the M
gradually increases, the shark angle becomes smaller.

6. Conclusions
In this simulation, the streamlines visually represent the flow pattern. It can be used to analyze the
flow behavior, especially supersonic flow behavior, around the obstacle based on the changing flow
velocity and Mach number value. The results indicate that the shark angle of the airfoil becomes
smaller with the increased Mach number. In other words, the relationship between the Mach number
and shark angle is inversely proportional. This suggests that higher Mach numbers can lead to more
streamlined flow patterns and potentially improved aerodynamic performance.

However, it's worth noting that the specific results of fluid flow over an airfoil in a realistic world
are influenced by a range of factors beyond just velocity and Mach number, such as the airfoil's shape
and angle of attack. Therefore, these possible influence factors need to be combined with the model so
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that future simulations can present a more accurate prediction. Further research is needed to fully
understand the complex interactions at fluid flow over airfoils. Meanwhile, selecting an appropriate
scheme is essential because it significantly influences the results of analyzing and simulating
incompressible flow over airfoils in various flow regimes.
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