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Abstract. An essential component of contemporary computer application technology is the 

recommender system. The collaborative filtering is one of RS's most crucial elements. acquiring 

knowledge about vector representations or, the model benefits from the combination of the graph 

neural network and model-based collaborative filtering since it can calculate the high-order 

connectivity in the item-user graph and perform better overall. This connectivity successfully 

and explicitly introduces the collaboration signal into the embedding process. Therefore, better 

embeddings also imply greater performance compared to more established collaborative filtering 

techniques, such as matrix factorization. The neural graph collaborative filtering (NGCF) 

algorithm will be primarily introduced in this article. In this paper, the performance of the NGCF 

algorithm is verified on several data sets, and the experimental results show that there is still 

room for improvement in the process of practical application. For instance, the NGCF algorithm 

is not appropriate for processing complicated data, and user cold start is an issue. This study 

offers a remedy for the difficulties the NGCF algorithm ran into in real-world use. Research on 

how to enhance the NGCF algorithm considering the issues will continue. 
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1.  Introduction 

An essential component of contemporary computer application technology is the recommender system. 

The collaborative filtering is one of RS's most crucial elements. acquiring knowledge about vector 

representations or, the model benefits from the combination of the graph neural network and model-

based collaborative filtering since it can calculate the high-order connectivity in the item-user graph and 

perform better overall. This connectivity successfully and explicitly introduces the collaboration signal 

into the embedding process. Therefore, better embeddings also imply greater performance compared to 

more established collaborative filtering techniques, such as matrix factorization. The neural graph 

collaborative filtering (NGCF) algorithm will be primarily introduced in this article [1]. Additional 

research and experimentation show certain issues with this strategy.  

In general, the learnable models of the collaborative filtering method consist of two similar elements. 

1) User and item embeddings, which show how users and items are related [2]. 2) interaction modeling, 

which may recreate past interactions using user and item embeddings [3]. For instance, in the case of 

user-item interactions with the inner product, matrix factorization (MF) directly relates the vector and 

matrix [4]. In addition to the interaction matrix, which needs more training, the matrix factorization, as 

shown in Figure 1, also comprises embeddings for users and things. 
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Despite the high success of their proposal, the authors claim that their methods are insufficient to 

provide appropriate embeddings for collaborative filtering (CF). The collaborative signal, which is latent 

in user-item interactions and exposes the behavioural similarity between users or objects, is the principal 

culprit because the embedding function does not explicitly encode it. Most current methods create the 

vectors using solely the features of the users or objects, ignoring user-item interactions. Therefore, the 

approaches must develop extra functions to make up for the fact that the embeddings are insufficient for 

collecting CF [5]. 

1.1.  Matrix factorization 

This method contains the core players of the learnable CF models, as seen in Figure 1. The users prefer 

what sort of goods and the qualities of objects used for describing the difference between items are 

highlighted in their own embeddings, which are specific to the users and the items. The interaction 

matrix is in the centre of it, and once we have this matrix, we must train the user and item embeddings 

to mimic the training set. After training the required embeddings, it will be evident what kinds of items 

this user prefers to see. However, the input data for this method is quite constrained and that it can only 

describe the relationship between users and objects in a direct manner; as a result, it is unable to acquire 

the actual human characteristics. The interaction matrix is always a type of sparse matrix today when 

we use the CF in real situations, thus the performance of this MF algorithm is not satisfactory, or the 

algorithm needs to be enhanced to be used in everyday life. 

Therefore, the designers of the NGCF method overcome this difficulty by utilizing the high-order 

connection from several layers of user-item interactions. One of the fundamental ideas of neural graph 

collaborative filtering is high-order connectivity, a natural approach to convey collaborative signal in 

the interaction graph structure. 

1.2.  High-order connectivity 

The left side of the link network in Figure 2 illustrates how consumers selects various objects. However, 

many CF algorithms adopt this graph layout and solely take into account direct connections. The goal 

is to make some recommendations to User 1, which is marked in this graph by a double circle. The graph 

is then converted to a tree data pattern. The user1 is represented by the right-hand side of this graph and 

has several layers of neighbours, the first of which is direct relationships with the objects that user1 used 

to view through or choose. Users' interactions with these things make up the second layer, and the same 

concept is at the third level. 

The path that leads to 𝑢1 from any cluster with a path length 𝑙 greater than 1 is known as the high-

order connectivity. The semantics of such high-order connectivity transmit signals for collaboration. For 

instance, the behaviour similarity between u1 and u2 is indicated by the path u1←i2←u2when  both 

users have specific interactions with i2. Given that 𝑖4 was previously consumed by user u2 who are 

 

Figure 1. Architecture matrix factorization. 
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comparable to u1 , the path u1←i2←u2←i4  provides more information and suggests that u1  is more 

likely to adopt u1.Additionally, according to the overall perspective of l=3, item i4 is more likely to be 

attracted to user u1 than item i5 since there are two pathways that connect the <i4,u1> while there is only 

one that does so for the <i5,u1>. 

The neural map cooperative filtering (NGCF) technique is the major topic of this study. The 

effectiveness of the NGCF algorithm is tested on several datasets in this research. The findings of the 

experiment demonstrate that there is still potential for advancement in the NGCF algorithm's practical 

use. For instance, the NGCF algorithm has the issue of user cold start and is unsuitable for processing 

complicated data. The author of this work disputes the NGCF method and offers a resolution. This paper 

proposes to the newly joined user of the system construction or use of user profiles, a specific algorithm 

is designed to integrate most of the features of information type, use of distributed learning, and 

encryption technology to realize the collaborative modelling and enhance the validity of AI model, 

improve the security of the model. 

2.  Model architecture 

2.1.  Structure of embedding layers 

The author uses an embedding vector 𝑒𝑢 ∈ ℝ
𝑑(𝑒𝑖 ∈ ℝ

𝑑) to reflect a user (an item), where 𝑑 is size of 

the embedding. Apparently, the parameter matrix could well be constructed as follows: 

 𝐸 = [ 𝑒𝑢1,⋯ , 𝑒𝑢𝑁⏟      
𝑢𝑠𝑒𝑟‘𝑠 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠

, 𝑒𝑖1,⋯ , 𝑒𝑖𝑁⏟      
𝑖𝑡𝑒𝑚’𝑠 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠

] (1) 

It is important to note that the user and item embeddings start off in the embedding matrix. Additional 

information is necessary in the different layers of the NGCF architecture, which involves the insertion 

of more collaborative information to embeddings. As a result, the propagation should not be neglected. 

2.2.  Structure of embedding propagation layers 

The message-passing architecture of GNNs is introduced by the following author in order to collect the 

complex graph information [6]. The one-layer propagation occurs first, and subsequently several layers 

are added. 

2.2.1.  Propagation in first order. It is quite essential that the features of the items can be viewed as a 

component of the user embedding when a user consumes or selects an item, in our opinion. The two 

main operations in this section should therefore be: message aggregation and construction [7]. 

Message Structure Construction: According to a connected user-item interaction, the structure of the 

message data from 𝑖 to 𝑢 is: 

 𝑚𝑢→𝑖 = 𝑓(𝑒𝑖, 𝑒𝑢, 𝑝𝑢𝑖) (2) 

 

Figure 2. An excellent demonstration of the high-order connectivity and the user-item interaction 

graph. The user for whom suggestions should be made is node u1 [1]. 
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Apparently, 𝑚𝑢→𝑖  is the message information, while 𝑓(∙)  is the message information encoding 

function. Since 𝑒𝑖 and 𝑒𝑢 are used as the input, to regulate the decay factor on each edge, the coefficient 

𝑝𝑢𝑖 is attached. The 𝑓(∙) is constructed as: 

 𝑚𝑢→𝑖 =
1

√|𝑁𝑢||𝑁𝑖|
(𝑊1𝑒𝑖 +𝑊2(𝑒𝑖⊙)) (3) 

Author shows that 𝑊1,𝑊2 ∈ ℝ
𝑑′×𝑑 are weight matrices which can be effectively trained, while 𝑑′ is 

the transformation size. This model considers not only the contribution of 𝑒𝑖, but also the interaction 

between the 𝑒𝑖 and 𝑒𝑢, where ⨀ where represents the element-wise specific product. 

Message Aggregation: In this session, this framework defines the aggregation function as: 

 𝑒𝑢
(1)
= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑚𝑢←𝑢 + ∑ 𝑚𝑢←𝑖𝑖∈𝑁𝑢 ) (4) 

After the first propagation layer, the  𝑒𝑢
(1)

represents the representation of user 𝑢. Meanwhile, the 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 have the ability to assist messages to encode much more varieties of signal information, 

which can be positive or tiny negative signals. This specific framework also can consider the self-

connection of 𝑢 into the structure: 𝑚𝑢←𝑢 = 𝑊1𝑒𝑢, which keeps the original features. 

2.2.2.  Propagation in high-order. After acquiring each layer connection modeling, we may gain more 

embedding propagation layers to generate high-order information [8]. When it comes to the l-th step, 

the algorithm can obtain: 

 𝑒𝑢
(𝑙)
= 𝐿𝑒𝑎𝑘𝑅𝑒𝐿𝑈(𝑚𝑢←𝑢

(𝑙)
+ ∑ 𝑚𝑢←𝑖

(𝑙)
𝑖∈𝑁𝑢 ) (5) 

The messages that are being transmitted are defined as follows: 

 {
𝑚𝑢←𝑖
(𝑙)

= 𝑝𝑢𝑖(𝑊1
(𝑙)
𝑒𝑖
(𝑙−1)

+𝑊2
(𝑙)
(𝑒𝑖
(𝑙−1)

⊙𝑒𝑢
(𝑙−1)

))

𝑚𝑢←𝑖
(𝑙)

= 𝑊1
(𝑙)
𝑒𝑢
(𝑙−1)

 (6) 

where 𝑊1
(𝑙)
,𝑊2

(𝑙)
∈ ℝ𝑑𝑙×𝑑𝑙−1 are the matrices that are trainable, and 𝑑𝑙 means the transformation size. 

𝑒𝑖(𝑙 − 1) is what the item representation generated from at the message-passing part that is calculated 

before. Meanwhile it can also memories the message from (𝑙 − 1)-hop neighbors. 

In this method, the collaboration signal 𝑢1 ← 𝑖2 ← 𝑢2 ← 𝑖4 may be recorded. As a result, the various 

embedding propagation levels contribute to the learning process. 

2.2.3.  Propagation in matrix form. To acquire a global perspective of embedding propagation, the 

author gives the layer-wise propagation rule in matrix form [9]: 

 𝐸(1) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈((𝐿 + 𝐼)𝐸(𝑙−1)𝑊1
(𝑙)
+ 𝐿𝐸(𝑙−1)⊙𝐸(𝑙−1)𝑊2

(𝑙)
) (7) 

It is important that 𝐸(𝑙) ∈ ℝ
(𝑁+𝑀)×𝑑(𝑙)are the information or representation about users and items 

which can be obtained after 𝑙 steps of embedding propagation. 𝐿 represents the Laplacian matrix, which 

is for the user-item graph. The algorithm is constructed as: 

 𝐿 = 𝐷−
1

2𝐴𝐷−
1

2𝑎𝑛𝑑𝐴 = [
0 𝑅
𝑅𝑇 0

] (8) 

The user-item interaction matrix is illustrated as the 𝑅 ∈ ℝ𝑁×𝑀 . In the calculation session 0 

represents all zero matrix. Meanwhile 𝐴 means the adjacency matrix and 𝐷 represents the diagonal 

degree matrix. So, the algorithm represents the t-th diagonal element 𝐷𝑡𝑡 = |𝑁𝑡| and the off-diagonal 

nonzero insertion 𝐿𝑢𝑖 =
1

√|𝑁𝑢||𝑁𝑖|
. 

Through these sessions, algorithm can effectively update the representations for all users and things 

at once by employing the matrix-form propagation rule. 
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2.3.  Model prediction 

Algorithm would experience L layers propagation and this framework gets multiple representations for 

user 𝑢 , namely𝑒𝑢
(𝑙)
, ⋯ , 𝑒𝑢

(𝐿)
. And we do the same operation on items, then we can get the final 

embeddings. 

 𝑒𝑢
∗ = 𝑒𝑢

(0)
∥ ⋯ ∥ 𝑒𝑢

(𝐿)
, 𝑒𝑖
∗ = 𝑒𝑖

(0)
∥ ⋯ ∥ 𝑒𝑖

(𝐿)
 (9) 

where ∥ is the concatenation operation. Concatenation has the benefit of being simple, as there are no 

additional factors to understand. 

The framework then uses the internal product to determine the user's choice for the desired item: 

 �̂�𝑁𝐺𝐶𝐹(𝑢, 𝑖) = 𝑒𝑢
∗𝑇𝑒𝑖

∗ (10) 

In this section, the algorithm merely makes use of the basic inner product interaction function. 

2.4.  Optimization 

This approach maximizes the pairwise BPR loss to learn the parameters [10]. BPR assumes that 

witnessed interactions should be given greater prediction values than unobserved ones since they are 

more indicative of a user's preferences. The following describes the goal function: 

 𝐿𝑜𝑠𝑠 = ∑ −𝑙𝑛𝜎(�̂�𝑢𝑖 − �̂�𝑢𝑗) + 𝜆 ∥ Θ ∥2
2

(𝑢,𝑖,𝑗)∈𝑂  (11) 

3.  Experiments 

This section primarily discusses what this paper have learned or have learned through the NGCF model. 

The first step in the proof is to show how to convert the high-order form, also known as the victor form, 

of embedding propagation into a matrix form that the code can easily use to train the data. The following 

are some issues This paper discovered throughout the course of this investigation. 

3.1.  The prove of the victor form propagation to matrix form 

The first step is to insert each layer's parameters such that this paper may obtains the equation as: 

𝑒𝑢
(𝑙)
= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑢

(𝑙−1)
𝑤1
(𝑙)
+

1

√|𝑁𝑢||𝑁𝑖|
∑ [𝑒𝑖

(𝑙−1)
𝑊1
(𝑙)
+ (𝑒𝑖

(𝑙−1)
⊙𝑒𝑢

(𝑙−1)
)𝑊2

(𝑙)
]𝑖∈𝑁𝑢 )

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑢
(𝑙−1)

𝑤1
(𝑙)
+

1

√|𝑁𝑢||𝑁𝑖|
[∑ 𝑒𝑖

(𝑙−1)
𝑊1
(𝑙)

𝑖∈𝑁𝑢 + ∑ (𝑒𝑖
(𝑙−1)

⊙𝑒𝑢
(𝑙−1)

)𝑊2
(𝑙)

𝑖∈𝑁𝑢 ])
 (12) 

Then this paper changes each layer’s representations to the matrices form. Because the 𝑝𝑢𝑖 is the 

graph Laplacian norm, author can change the first part of these norm into Laplacian matrix. 

𝐸𝑢
(𝑙) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐸(𝑙−1)𝑊1

(𝑙) +
1

√|𝑁𝑢||𝑁𝑖|
(𝐴𝐸(𝑙−1)𝑊1

(𝑙) + 𝐴𝐸(𝑙−1)⊙𝐸(𝑙−1)𝑊2
(𝑙)))

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝐸(𝑙−1)𝑊1
(𝑙) + 𝐿𝐴𝐸(𝑙−1)𝑊1

(𝑙) + 𝐿𝐸(𝑙−1)⊙𝐸(𝑙−1)𝑊2
(𝑙))

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈((𝐿 + 𝐼)𝐴𝐸(𝑙−1)𝑊1
(𝑙) + 𝐿𝐸(𝑙−1)⊙𝐸(𝑙−1)𝑊2

(𝑙))

 (13) 

 

Table 1. The Datasets. 

Datasets Users Items Interactions Density 

Gowalla 29,858 40,981 1,027,370 0.00084 

Yelp2018 31,668 38,048 1,561,406 0.00130 

Amazon-Book 52,643 91,599 2,984,108 0.00062 

My Own Dataset 100,858 40,981 4,127,371 0.00099 
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The Table1 displays all of the datasets I utilized. Additionally, Table 2 shows the NGCF's 2018 

Amazon-Book performance. In all the methods I examined, the hit rate indication is usually always the 

best. The performance of the three distinct frameworks for the Gowalla dataset is displayed in Table 3. 

3.2.  Some phenomena and solution 

3.2.1.   Larger or more complex datasets. As seen in Table 1, the GPU server informs me that my data 

is out of memory when I try my datasets on the NGCF. The datasets do, however, truly exist in our day-

to-day lives. The matrix is not sparse enough, hence it might not be applicable in this circumstance. 

Perhaps the MF's performance at the time was superior to the NGCF's. 

In practice or in daily life, NGCF cannot handle problems that are too complicated or overwhelming. 

In the case of data of a particular size, NGCF ought to be more effective. The program may need to use 

more and more algorithms to handle as many circumstances as feasible if the developers attempt to use 

the NGCF in our everyday lives. For instance, it is best to first compute before building a rudimentary 

model of the data to be processed. We can use the method to determine the sparsity and complexity 

based on the data model before selecting the best recommendation technique. This type of action can 

reduce the time cost and improve the performance of the recommendation system. Therefore, it is best 

to utilize the advised algorithm when it is possible to do so. 

3.2.2.  Cold start problems. There are a wide variety of cold stat difficulties. 1) Cold Start User refers 

to a new user with an empty embedding. 2) The term "item cold start" refers to the initial, inactive 

interaction between new things and users. System Cold Start refers to the difficulty with installing a new 

system in a new network. As a result, when the author tried to test the algorithm's performance on the 

user cold start problem using many users, I performed poorly. The precision is about 0.04286 and the 

recall is about 0.13813, which is significantly worse than the original datasets. 

These issues today are fundamentally and inherently characterized by the absence of critical 

information. These issues can be resolved due to stronger models if users or goods models can obtain 

additional data or interactions from other areas of the apps or other businesses. For instance, the 

recommendation system can construct or employ user profiles, which are a type of label used to 

specifically describe user preferences, for the newly joined users to the system. The system might 

initially build an interaction matrix or function based on user profiles using this kind of data. 

However, not all businesses are willing to give their data, thus recommendation systems require a 

certain sort of algorithm that integrates most information types in features that do not immediately reveal 

the facts. With the aim of accomplishing collaborative modeling and enhancing the efficacy of AI 

models, Federated Learning utilizes Distributed Learning and Encryption Technology. Additionally, 

this algorithm might obtain user profiles in a manner that ensures data privacy, security, and compliance 

with the law. 

Table 2. NGCF test on the amazon-book. 

Indicators The Best Four Numbers 

recall 0.15743 0.26833 0.30589 0.33690 

precision 0.04835 0.03439 0.02788 0.02125 

hit 0.054320 0.64800 0.70718 0.77587 

 

Table 3. Different performance. 

datasets framework recall ndcg 

Gowalla 

MF 0.1291 0.1109 

GC-MC 0.1395 0.1204 

NGCF 0.1569 0.1327 
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The primary goal of the recommendation system application should be to use these methods to obtain 

a better model because they can significantly lessen the cold start issues. 

4.  Conclusion 

In this paper, the neural graph collaborative filtering (NGCF) algorithm is introduced in detail, and the 

performance of the NGCF algorithm is verified on several data sets. Although the NGCF algorithm 

solves the problem that the transmission signal of the interactive information between users and goods 

can't be expressed in the embedded layer, this paper finds that there are still other challenges in the 

practical application of the NGCF algorithm through a series of experiments. The NGCF algorithm is 

prone to the problem of insufficient GPU memory when dealing with complex data, so the NGCF 

algorithm is not suitable for complex data. In addition, by building many users to test the performance 

of the algorithm on the user's cold start problem, the performance of the algorithm is poor, the precision 

is about 0.04286 and the recall is about 0.13813. This result is far lower than the performance on the 

original data set. This paper makes several recommendations based on the identification of the issues, 

including the creation or use of user profiles for new users, the design of a particular algorithm to 

incorporate the features of the majority of information types, and the use of distributed learning and 

encryption technology to realize collaborative modeling, improve the efficacy of AI models, and 

increase the security of models. Research on how to enhance the NGCF algorithm considering the 

aforementioned issues will continue. 

References 

[1] Xiang Wang & Xiangnan He & Meng Wang &Fuli Feng & Tatseng Chua (2019) Neural Graph 

Collaborative Filtering, SIGIR 2019. 

[2] Kula, M. (2015). Metadata embeddings for user and item cold-start recommendations. arXiv 

preprint arXiv:1507.08439. 

[3] Xue, F., He, X., Wang, X., Xu, J., Liu, K., & Hong, R. (2019). Deep item-based collaborative 

filtering for top-n recommendation. ACM Transactions on Information Systems (TOIS), 37(3), 

1-25. 

[4] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender 

systems. Computer, 42(8), 30-37. 

[5] Xiangnan He & Lizi Liao & Hanwang Zhang & Liqiang Nie & Xia Hu & Tat-Seng Chua (2017) 

Neural Collaborative Filtering in WWW.173-182 

[6] Thomas N. Kipf & Max Welling (2017) Semi-Supervised Classification with Graph 

Convolutional Networks. 15In ICLR 

[7] Ding, M., Cheng, X., & Xue, G. (2003, October). Aggregation tree construction in sensor 

networks. In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. 

No. 03CH37484) (Vol. 4, pp. 2168-2172). IEEE. 

[8] Wang, G. A., Yang, S., Liu, H., Wang, Z., Yang, Y., Wang, S., ... & Sun, J. (2020). High-order 

information matters: Learning relation and topology for occluded person re-identification. In 

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 

6449-6458). 

[9] Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K. R. (2019). Layer-wise 

relevance propagation: an overview. Explainable AI: interpreting, explaining and visualizing 

deep learning, 193-209. 

[10] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian 

personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618. 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230710

1286


