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Abstract. Lots of complex systems in the real world have network structures, and a number of 

these structures have small-world property. This kind of structures are called small-world 

networks. Examples include the world's air transportation system, electric power systems, and 

human functional brain network, and small-world property is one of the key reasons why these 

systems function efficiently. However, for complex systems, in addition to their efficiency, 

resilience or robustness is also one of the concerns, as these systems need to ensure that they 

do not completely collapse on their own in case of failure of a small number of their 

components. The purpose of this paper is to try to find and explain the factors that affect the 

robustness of small-world network by comparing different classes of small-world networks and 

analysing differences between them and possible causes of these differences, in order to get an 

idea to optimize the robustness of small-world networks while preserving their small-world 

property. 
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1.  Introduction 

Network structure is a very common complex structure in real world, and this structure has many good 

properties. The study on network structure helps humans to better understand and use concrete or 

abstract things with such structures. One of the quite noteworthy properties is small-world property. 

Small-world property is not universal, for example, regular lattice does not have small-world 

property. However, for networks with small-world property, the expectation of the distance between 

any two nodes in the network grows in the same order as the logarithm of the network size, provided 

that the degree distribution of nodes is determined [1, 2]. For networks with small-world property, 

even if a lot of nodes are contained, the communication between any two points often requires few 

nodes to be established. 

Because of the aging of vertices and the limited capacity of vertices, behaviors such as preferential 

attachment tend to be suppressed to varying degrees during the growth of real networks, and thus the 

scale-free degree distribution is affected to different degrees [3]. Among the networks that can 

eventually maintain small-world property, they can be classified into the following three types based 

on the degree distribution: scale-free networks, broad-scale networks and single-scale networks [3]. 

By using the Molloy-Reed Criterion, the criterion for criticality for the disruption of a network's 

giant component can be obtained by the following equation [4]: 
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 𝑓𝑐 = 1 −
1

〈𝑘2〉

〈𝑘〉
−1

   (1) 

This indicates that the resilience of the network is related to the first-order moment and second-

order moment of all nodes’ degree, which means the resilience of network is related to degree 

distribution. Therefore, even if they are the same small-world networks, their resilience can differ. 

This paper aims to investigate the differences in resilience among different small-world networks 

caused by various degree distributions, and discuss some possibility of preserving the small-world 

property while making networks highly robust. 

2.  Classes of small-world networks 

2.1.  Scale-free networks 

In such class of networks, degree of nodes decays with the power law. The following equation is about 

scale-free networks’ degree distribution [3, 5]: 

 𝑝𝑘 = 𝐶𝑘−𝛾  (2) 

Because of power-law distribution itself and peculiarities of the degree exponent, the first- and 

second-order moments of the degree of such networks are in most cases divergent and there is no 

meaningful scale [6], so such networks are called scale-free networks. When the degree exponent 

satisfies 2 < 𝛾 < 3 , such networks are called ultrasmall worlds, because the expectation of the 

distance between any two points in them is even lower than the logarithmic order of the network size, 

which can be expressed by the following equation [5]: 

 〈𝑑〉~ ln ln 𝑁  (3) 

The ultra-small world network is extremely robust to random errors, ensuring connectivity between 

most of the remaining nodes even if the vast majority of them suffer failures. It is not robust against 

targeted attacks, as the removal of a tiny number of hub nodes is sufficient to severely disrupt the 

network topology [7]. 

It is clear that the number of low degree nodes is much greater than the number of high degree 

nodes in such networks because of power-law distribution, and therefore such networks always exhibit 

a decentralized topology with a lot of small nodes connected by several hub nodes. 

2.2.  Broad-scale networks 

While network growing, the preferential attachment causes the degree distribution of nodes in the 

network to satisfy the power-law distribution in general [8], but in real world networks, because of 

constraints such as aging of vertices and limited capacity of vertices, behaviours such as preferential 

attachment in the process of network growth are suppressed to different degrees, resulting in 

exponential decay or Gaussian decay of the degree distribution in the tail [3]. 

Considering node aging in the process of simulating network evolution, i.e., letting nodes attract 

new links at a gradually decreasing rate with iteration, will make the final generated network have a 

weaker power-law mechanism than the original BA model, i.e., let the network tend to be 

homogeneous; when the aging effect of the simulation is strong enough, the network will completely 

lose its scale-free property [3, 9]. 

A similar effect is produced by considering the capacity limit of nodes during network growth, i.e., 

nodes whose degree reaches a certain limit are not allowed to continue building new links during 

network growth [3]. 

2.3.  Single-scale networks 

The degree distribution of such networks has a rapidly decaying tail and usually obeys a probability 

distribution such as a Gaussian or exponential distribution [3]. In this class of networks, the scales of 
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such networks are meaningful because the first-order moment and second-order moment of degree do 

not diverge. 

Random network has degree distribution obeying the binomial distribution, so there exists a single 

scale for such networks, which belong to single-scale networks. For a large random network, Poisson 

distribution is accurate enough to approximate its degree distribution with less variables, and the 

second-order moments of degree can be obtained from the Poisson distribution as: 

 〈𝑘2〉 = 〈𝑘〉(〈𝑘〉 + 1)  (4) 

From equation (1) and equation (4), the criterion for criticality of the random network can be 

obtained as follows: 

 𝑓𝑐
𝐸𝑅 = 1 −

1

〈𝑘〉
  (5) 

For random networks, when the ratio of removed nodes to all nodes is higher than 𝑓𝑐
𝐸𝑅, the network 

will crack, that is, there will leave no giant component whose size increases with a same order as the 

whole original network [4]. From equation (5), it is clear that the expectation of degree determines the 

sensitivity of a random network to random errors, so the criterion for criticality needs to be raised by 

adding many links in the network. 

In fact, random networks are not the only ones with such a property. Unlike scale-free networks, 

most nodes have degree fluctuating around 〈k〉 in single-scale networks because those networks own 

meaningful scale. The network always decomposes after randomly removing a certain percentage of 

nodes because it lacks robustness in case of random errors due to the absence of hub nodes. 

3.  Small-world network in real world 

There is no standard scale-free network in reality, because the formation of a network with power-law 

degree distribution needs that the network has linear preferential attachment during growth, and the 

presence of facilitation or inhibition phenomena is not allowed [10], which is difficult to guarantee in 

reality. Therefore, the study of such small-world networks is often limited to the analysis of theoretical 

models such as the BA model or the ideal approximation of the real network structure, while few real 

network structures directly correspond to them. 

When discussing real world scale-free networks, it always actually tends to discuss networks with a 

broad-scale or truncated scale-free degree distribution, i.e., scale-free networks with truncation. Movie 

actor network, the Internet, and human functional brain network belong to such small-world networks 

[3, 4, 11]. 

 Figure 1. Network of movie actors [3]. 
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Taking the movie actor network as an example, in figure 1 there is a real-world scale-free network, 

with low-degree saturation and high-degree truncation because of the presence of other constraints in 

the real world. The frequency of the low degree nodes is less than the predicted value of the power-

law distribution due to low-degree saturation. The middle part of the degree distribution is better fitted 

by power-law distribution, and then there is a sharp decay in the tail, in this case exponential decay. 

Thus, the number of both low degree nodes and high degree nodes of the broad-scale network is 

significantly less than that of the scale-free network, which will make their properties exhibit 

differences. 

Electric power grid and world airport network are real-world examples of single-scale networks [3], 

as presented in figure 2. In such small-world networks, the degrees of most nodes are similar to the 

first-order moment of degree because of the existence of scale, and the differences between nodes are 

not disparate. The network exhibits a decentralized pattern from which some of the properties in 

random networks originate, and thus it can be generalized to other single-scale networks as well. 

 
Figure 2. Electric power grid and the world airport network [3]. 
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For dynamically growing networks, the network will completely lose its scale-free property and 

produce a degree distribution close to a Gaussian or exponential distribution when aging or capacity 

constraints affect the preferential attachment of nodes sufficiently during the growth process [3, 9]. It 

is therefore possible that such networks arise due to the high cost of linking to new nodes to existing 

nodes in the real world or other constraints. 

4.  Impact on small-world networks 

For scale-free networks, when 2 < 𝛾 < 3, i.e., the network is an ultrasmall world. When the network 

size 𝑁 is unlimited, there is 𝑓𝑐 → 1. That is, for a sufficiently large scale-free network, by randomly 

removing the nodes in it, all of nodes need to be removed to ensure that the remaining nodes cannot 

form a giant component, which explains that the scale-free network has excellent robustness to 

random errors. When 𝛾 > 3, the criterion for criticality 𝑓𝑐 is only determined by the degree exponent 𝛾 

as well as the minimum degree 𝑘𝑚𝑖𝑛, which means that for a given degree distribution, a scale-free 

network with 𝛾 > 3 will always be decomposed after removing a certain percentage of nodes. The 

remaining nodes will not be able to form a giant component [12]. In terms of robustness only, scale-

free networks with 𝛾 > 3 exhibit properties consistent with random networks. 

Facing to targeted attacks, criterion for criticality of scale-free network can be described by the 

following relation [13]: 

 𝑓𝑐

2−𝛾

1−𝛾 = 2 +
2−𝛾

3−𝛾
𝐾𝑚𝑖𝑛 (𝑓𝑐

3−𝛾

1−𝛾 − 1)  (6) 

From equation (6), it can be seen that the criterion for criticality of the scale-free network does not 

diverge with increasing network size in the face of targeted attacks. When 𝛾 is small, the critical 

threshold will also take a relatively small value, illustrating the vulnerability of the ultra-small-world 

network with 2 < 𝛾 < 3  in the face of targeted attacks. When 𝛾  is large, the network can be 

approximated as a random network, exhibiting a similar robustness to that in the face of random errors. 

Therefore, as far as the robustness of the network is concerned, a scale-free network with 𝛾 > 3 can be 

considered equivalent to a random network. 

As stated in 2.2, the Internet is a broad-scale network. The Internet is highly robust in the face of 

random errors of nodes. Even if close to 100% of them are randomly removed, the remaining nodes 

are guaranteed to have giant formed components [4]. Like scale-free networks, the Internet is highly 

sensitive to targeted attacks [13], which indicates that truncation of the distribution does not bring 

significant differences between the Internet and scale-free networks. 

Human brain network also belongs to broad-scale networks. The degree distribution of nodes in 

human functional brain network satisfies power-law distribution with exponential truncation, which 

makes brain network not only robust to random errors, but also shows better resilience to targeted 

attacks similar to random networks. This property is due to the fact that human brain networks have 

fewer high-degree nodes and more medium-degree nodes compared to standard scale-free networks 

[11]. Therefore, for scale-free networks, imposing certain restrictions on the dominant role of hub 

nodes does not cause a significant decrease in the resilience of the network to random errors, but can 

effectively improve the resilience of the network in the face of targeted attacks. 

Single-scaled networks, in the case of random networks, are always decomposed after removing a 

certain percentage of nodes, according to equation (1), because there is no divergence of criterion for 

criticality due to the existence of the network's scale. The robustness on targeted attacks and random 

errors and is similar for a random network. According to equation (5), the criterion for criticality of the 

random network is determined by the first-order moment of degree, and improving the network 

robustness requires adding a lot of new links to the network as a cost. Single-scale networks with 

different degree distributions show many differences in facing random errors and targeted attacks, for 

example, for networks with Gaussian-distributed degree distributions, the network is more sensitive to 

random errors when 𝜎2 < 𝜇 and to targeted attacks when 𝜎2 > 𝜇 [14]. 
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5.  Improved robustness 

Here is a strategy to optimize the network robustness by designing degree distribution to make a better 

resilience on both random errors and targeted attacks: let only two types of nodes with degrees 𝑘𝑚𝑖𝑛 

and 𝑘𝑚𝑎𝑥 exist in the network where the degree of only one node is 𝑘𝑚𝑎𝑥 and the degrees of the rest 

of the nodes are 𝑘𝑚𝑖𝑛, thus forming a network with a degree distribution with a bimodal distribution 

[15]. This strategy can work because the probability that the failed node is the node with degree 𝑘𝑚𝑎𝑥 

is extremely low in the face of random failures because there is only one node with degree 𝑘𝑚𝑎𝑥; the 

remaining nodes can also maintain the connectivity of the network in the face of targeted attacks. This 

is also enlightening to recognize the differences in robustness between different kinds of small-world 

networks. 

As was introduced, the formation of scale-free networks is greatly affected by the linear 

preferential attachment while growing. When the linear preferential attachment is suppressed, i.e., 

there is sublinear preferential attachment, the degree distribution of the network obeys an 

exponentially truncated power-law distribution, and a broad-scaled network is formed at this time. 

When the role of preferential attachment is very weak, the degree distribution obeys an exponential 

distribution and the network degenerates to a single-scaled network. 

The robustness of the network can be quantified using the following equation [15]: 

 𝑓𝑐
𝑡𝑜𝑡 = 𝑓𝑐

𝑟𝑎𝑛𝑑 + 𝑓𝑐
𝑡𝑎𝑟𝑔

  (7) 

That is, the robustness of a network can be expressed as the sum of the criterion for criticality of 

that network in the face of random errors and the criterion for criticality in the face of targeted attacks. 

The connectivity of scale-free networks is mainly maintained by a few high-degree nodes, and random 

errors are nearly impossible to affect these high-degree nodes, so there is a large 𝑓𝑐
𝑟𝑎𝑛𝑑, while targeted 

attacks are very easy to destroy high-degree nodes, so the 𝑓𝑐
𝑡𝑎𝑟𝑔

 is low; the nodes in single-scaled 

networks are relatively similar, and there is no significant difference caused by how the nodes are 

removed, so the 𝑓𝑐
𝑟𝑎𝑛𝑑 is lower and the 𝑓𝑐

𝑡𝑎𝑟𝑔
 is higher than scale-free networks. By adding a certain 

degree of cost to the network growth phase, the network can be made more resilient to the targeted 

attacks at the cost of losing some of its scale-free property, ultimately generating a broad-scale 

network with a higher 𝑓𝑐
𝑡𝑜𝑡. 

6.  Conclusion 

There are many kinds of networks with small-world property, and by classifying them and studying 

them separately, it is known that a major source of differences among small-world networks is the 

difference in preferential attachment and ultimately leads to different degree distributions and different 

robustness. By adding different degrees of cost to the process of adding new nodes to the network, the 

robustness of the final generated network can be adjusted. 

Scale-free networks have excellent robustness on random errors severe weakness for targeted 

attacks. By increasing the cost of the network growth model with linear preference dependencies, the 

final generated network can be gradually approached from the original scale-free network to single-

scale network with better robustness against targeted attacks, and the total robustness of the network 

shows a trend of increasing and then decreasing. By reasonably limiting the preferential attachment of 

the network appropriately, a network with better robustness against targeted attacks can be obtained at 

the cost of losing a portion of the scale-free property, and eventually a network with better robustness 

to both random errors and targeted attacks is obtained, which will be a small-world network where the 

degree distribution obeys an exponentially truncated power-law distribution. 
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