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Abstract. Causality is an appealing but challenging domain for researchers in generations. 

Recently, researchers have shifted their focus to combining traditional causal inference methods 

and machine learning models to get both advantages. Meta learner is an algorithm for causal 

inference, including T-learner, S-learner, and X-learner. Another popular way in causal inference 

is based on decision tree learning, one of the predictive modeling approaches. Many existing 

works focus on estimating the causal effect of binary treatment. However, there are also many 

cases in the real world when the treatment has more than two values. These methods cannot be 

used directly in multivalued treatment cases. According to the mathematization of causality, we 

improved the binary meta-learner process to be applicable in multi-treatment situations. At the 

same time, we also preliminarily explored the technique of uplifting trees. Finally, we applied 

the two methods to analyze parents' and children's learning situations in hundreds of families to 

test the effect of improvement. 

Keywords: muti-treatment, meta learner, uplift tree. 

1.  Introduction 

There is a well-known statement: correlation (or, more generally, statistical association) does not imply 

causation. In statistics, correlation is a relationship between two variables representing an increasing or 

decreasing trend [1]. Causation indicates that the cause is partly responsible for the effect, and the result 

is also somewhat dependent on the cause [2].  

The crucial part of a causation study is to reduce the bias within. Randomized control trials are a 

compelling solution for estimating causal effects because this makes the control and treatment groups 

comparable. However, randomized experiments cannot be used in every situation as they could be time-

consuming, expensive, and sometimes infeasible [3].  

When studying causal inference using observational data, traditional methods, including matching, 

propensity score, subclassification, weighting, and doubly robust estimation, have been proposed to 

acquire covariate balance across treatment groups [3,4,5,6]. With the rapid development of computer 

science, traditional machine learning methods, like meta-learner and uplift tree, have been used to 

estimate causal effects. 
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Generally, the meta-learning-based algorithms have 2 steps: estimate the conditional mean outcome, 

and the prediction model learned in this step is the base learner, then derive the CATE estimator based 

on the difference of results obtained from the first step. Existing meta-learning methods include S-

learner, T-learner, X-learner, U-learner, and R-learner [7].  

One of the predictive modeling methods based on a decision tree is another popular approach in 

causality studying. The decision tree is a nonparametric supervised learning method for classification 

and regression. The purpose is to develop a model that predicts the value of a target variable by learning 

simple decision rules inferred from data. The tree-based framework also can be extended to uni- or 

multi-dimensional treatments [8]. Each dimension can be discrete or continuous.  

In this paper, we utilize the traditional machine learning method, meta-learner, and tree-based 

algorithms to explore the causal effects we are interested in within a dataset about student alcohol 

consumption. Besides, we also improved the meta-learner to study the causal impact of multi-valued 

treatment, and we found that tree-based methods perform well when the outcome is binary. The meta-

learning plans fit the situation when the product is continuous. 

For this research, CausalML was used. CausalML is a python package that allows users to estimate 

Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from a given data. 

Using machine learning algorithms, this package contains uplifting modeling and causal inference 

methods. However, its implementation of multiple treatments is flawed as it compares treatment with 

the control group pairwise, neglecting other treatment groups, which is statistically problematic. Our 

implementation of X learner would try and fix that. 

2.  Preliminaries 

We use the Neyman-Rubin potential outcome framework and assume a distribution 𝒫. Thus, we have 

(Yi(0), Yi(k), Xi, Ti) ~ 𝒫 , where Xi  ∈  ℝd  is a d-dimensional real-value feature vector, Ti  ∈
 {0, 1, . . . , k} is the treatment-assignment indicator, Yi(0)  ∈  ℝ is the potential outcome of unit i, when i 
is assigned to the control group, then Yi(k)  ∈  ℝ is the likely outcome of unit i, when i is given to the 

treatment group k. With this definition, the ATE between treatment groups m and n is defined as  

𝐴𝑇𝐸 ≔ 𝔼[𝑌(𝑚) − 𝑌(𝑛)]. 

Furthermore, we have the following representation of 𝒫: 

𝑋 ~ Λ, 

𝑌(𝑘)  =  𝜇𝑘(𝑋)  +  𝜀(𝑘), 

Where Λ is the marginal distribution of X, ε(k) is the zero-mean random variables independent of X 

and W. The ITE of unit i, Di, for treatment groups m and n is defined as  

𝐷𝑖 ∶=  𝑌𝑖(𝑚)  −  𝑌𝑖(𝑛). 

The CATE of unit i, between treatment groups m and n would then be  

𝜏(𝑥) ∶=  𝔼[𝐷 | 𝑋 =  𝑥]  =  𝔼[𝑌(𝑚)  −  𝑌(𝑛) | 𝑋 =  𝑥] 

2.1.  Introduction to meta-learners 

We will give a brief introduction to some proposed meta-learners. For this part, we would only consider 

binary treatment situations. 

T-learner can be broken down into two steps. First, we use one model per treatment variable. The 

response function would then be, 

μ0 = 𝔼[Y|T = 0, X], 

μ1 = 𝔼[Y|T = 1, X], 

where i is the complementary treatment. We could use any machine-learning model to train on 

observations in each treatment group. We denote the estimated function as μ̂1 and μ̂0. Then, we obtain 
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2 different models in total. Second, the CATE desired between the controlled group, and the treated 

group is then obtained as  

τ̂T(x)  =  μ̂1(x)  −  μ̂0(x) . 

S-learner is the most intuitive and the simplest learner we have. We use a single machine-learning 

model, μ̂, to estimate the response function,  

μ = 𝔼[Y|T, X]. 

For S-learner, we treat this as a regular machine-learning problem and include our treatment, T, as a 

feature in the model. Then, we can predict outcomes under different treatments and obtain our CATE 

between treatment i and treatment j as  

τiĵ(x)  =  μ̂(X, T =  j)  −  μ̂(X, T =  i). 

Note that S-learner would work on both binary treatment problems and discrete and continuous 

treatments. However, S-learner tends to bias the CATE toward zero, which will be shown later in this 

paper with real-world data. 

X-learner is a significantly more complex algorithm than the previous two and would also be the 

primary focus of this paper. X-learner can be broken down into two stages. First, estimate the response 

function,  

μ0 = 𝔼[Y|T = 0, X], 

μ1 = 𝔼[Y|T = 1, X], 

Where μ0 is the response function for the controlled group and μ1  
is the response function for the treated group. We could estimate this response function using any 

machine learning models. We denote the estimated functions as μ̂0 and μ̂1. Second, we calculate the 

treatment effects for each treatment group using the estimators obtained above.  

τ0̂(x)  =  μ̂1(X, T =  0)  −  Y(0) 

τ1̂(x)  =  Y(1)  −  μ̂0(X, T =  1) 

Then, with the estimated CATE, we can directly estimate the CATE with complete input features. 

The effect functions are then, 

μ̂τ0 = 𝔼[τ̂(X)|T = 0] 

μ̂τ1 = 𝔼[τ̂(X)|T = 1] 

Intuitively, X-learner can be broken down into two steps. In the first step, we fill in the unobserved 

data with predictions of counterfactuals like the T-learner, and in the second stage, we use our completed 

data to estimate CATE.   

In the following sections, propensity scores will also be utilized. Rosenbaum and Rubin first 

introduced it as the probability of treatment assignment conditional on the characteristics of the sample 

data [9]. Mathematically speaking, it is defined as P(T|X), where X is the characteristics of the sample 

and T is the treatment the model received. The propensity score would be used to balance the covariate 

distribution across different treatment groups, which could lead to an inaccurate weight of other 

treatment groups. This topic will be further discussed in the next section.   

2.2.  Tree-based algorithm 

2.2.1.  Uplift tree 

For the uplift model, predictive features are required for HTE(Yt − Yc), and feature selection methods 

based on the uplift tree tend to choose more important features for HTE. 
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Let us formalize the problem. 

Like building the ordinary decision tree, we hope that we choose the proper splitting criteria, which 

can maximize the information gained before and after the split. However, there is a little bit of difference 

that we hope to maximize the distribution gap of outcomes between the treatment group and control 

group. 

That means if we define 

D(P: Q) 

to measure the distribution divergence between P and Q, our purpose is to maximize this formula: 

Dgain(A) = D(PT(Y): PC(Y)|A) − D(PT(Y): PC(Y)) 

The definition of conditional divergence D(PT(Y): PC(Y)|A): 

Let A the splitting condition and N be the number of samples. After splitting, let a be one of the 

outcomes and N(a) be the number of the remaining pieces.  

We have: 

D(PT(Y): PC(Y)|A) = ∑
N(a)

N
D(PT(Y|a): PC(Y|a))

a
 

When the tree has been built, we calculate the treatment effect. 

We know that the current leaf nodes are subgroups of objects for which the treatment class 

distribution differs from the control class distribution.  

Now we analyze the case of binary outcomes.  

Suppose Y will just be 0 or 1, the later outcome is what we want.  

For a new sample it meets the condition to leaf node l, the treatment effect will be:  

PT(Y = 1|l) − PC(Y = 1|l) 

If y is a continuous variable, the treatment effect will be: 

ET(Y = 1|l) − EC(Y = 1|l)[11] 

2.2.2.  Causal forest 

This algorithm uses the ensemble method on some built uplift trees and then averages the treatment 

effect of each canal tree (uplift tree). 

In addition, the algorithm needs to meet a hypothesis, which is 

T ⊥ Y|X 

It means that treatment and outcome will be independent after controlling all confounders X [12]. 

3.  Proposed methods of meta learner 

Realistic needs often go beyond the scope of binary treatment. This section will introduce our improved 

models of S Learner, T Learner, and X Learner. It is worth noting that when looking into the causal 

relationship between variables in the multiple-treatment case, it is statistically incorrect to simply give 

a pairwise comparison like the binary case, for it fails to utilize the data of other treatment groups.   

3.1.  S and T learner 

Extending the binary version of S and T learners to multiple-treatment models is relatively trivial. Since 

the S learner directly uses the treatment as a feature in the binary case, the same principle can be applied 

to the multiple-treatment case.   

For T learners, similar to the binary case, a model would be trained for each group based on factual 

data. These models would be used to predict counterfactual results and calculate treatment effects as 

described in the following formula: 
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τ(Xi) = M1(Xi) − M2(Xi) 

Where τ is the treatment effect, M1 and M2 are the models fitted based on treatment groups 1 and 2, 

and Xi is the characteristic of a specific set of sample data. 

3.2.  X learner 

Improvements of the X Learner are more complicated. As explained earlier, the individual models 

trained for a T-Learner would be used as an intermediate result to predict counterfactual treatment 

effects. Here an example is given on comparing treatment groups 0 and 1 in a 3-treatment experiment: 

τ(X, T = 0) = M1(X, T = 0) − YT=0 

τ(X, T = 1) = YT=1 − M0(X, T = 1) 

τ(X, T = 2) = M1(X, T = 2)−M0(X, T = 2) 

Here T is the treatment effect that can take 0, 1, 2. M1  and M0 are models fit in the T learner based 

on data of treatment groups 0 and 1, respectively. Y denoted the factual data from a specific treatment 

group specified by its subscript. 

Similar to the binary case, we fit three models on τ(X, T = 0), τ(X, T = 1), and τ(X, T = 2)  to 

predict the treatment effect on a specific treatment group.  

We then fit a model on X to predict the propensity score e. The advantages of doing so have been 

discussed earlier. Using e as a weight for τ  of each treatment group, we can expect the final treatment 

effect: 

τ(X) = e0Mτ,T=0(X) + e1Mτ,T=1(X) + e2Mτ,T=2(X) 

In this way, the treatment effect of groups 0 and 1 could be estimated while accurately considering 

the cases in which T=2.  This example could be extended to more than three treatment groups following 

the same manner when dealing with treatment group 2: using the trained model to predict the treatment 

effect counterfactually and using their propensity scores as the weight in the final formula. 

4.  Real-world experiments 

4.1.  Application of meta learner 

In this section, we will perform our analysis on a real-life dataset looking into the relationship between 

the alcohol consumption of students and their grades [10]. The following graphs are some exploratory 

data analyses of our dataset. 

 

Figure 1. Column distribution. 
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Figure 2. Correlation matrix. 

 

 

Figure 3. Scatter matrix. 
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The Average Treatment Effect (ATE) between many data pairs is calculated using the models 

proposed in the previous section.  It is worth mentioning that there aren't any fixed specific "correct" 

solutions to the answers. We are using this dataset to show that our model could produce results 

compatible with an existing package.   

We would apply traditional machine learning methods, X Learner, implemented by a package and 

our implementation on this dataset. 

Using the improved X learner, we looked into the causal relationship between the level of mother's 

educational level with the number of absences in math class, the level of the father's educational level 

with the number of absences in math class, the workday alcohol consumption with the number of absent 

days and the final grade of their math classes. The result is shown in the following graph. The education 

levels are evaluated based on 0 to 4: 0 being the low level and 4 being the high level. At the same time, 

alcohol consumption is estimated from 1-5, 1 being never drinking and five being consuming a 

considerable amount of alcohol.  Further details can be found on the website. 

Table 1. ATE of parents' education level and number of absent days using our model. 

ATE Group 1-0 Group 2-0 Group 3-0 Group 4-0 

Mother’s education level- 

absences 

2.9514942 

 

4.865572 7.233008 5.1655226 

Father’s education level 

-absences 

7.4777775 

 

2.8022387 4.725139 3.1205428 

 

Table 2. ATE of parents' education level and number of absent days using package. 

ATE Group 1-0 Group 2-0 Group 3-0 Group 4-0 

Mother’s education level- 

absences 

3.1269537 

 

5.83861463 5.86365847 5.68739891 

Father’s education level 

-absences 

5.42818505 1.49965468 2.67241615 1.59391202 

 

Table 3. ATE of alcohol consumption on workday with absences and final grade using package. 

ATE Group 2-1 Group 3-1 Group 4-1 Group 5-1 

Alcohol Consumption -

absences 

1.88663458 0.61650378 4.00502642 -0.390577 

Alcohol Consumption -final 

grade (G3) 

-9.23595804 2.5338911 1.1233018 3.480226 

 

Table 4. ATE of alcohol consumption on workday with absences and final grade using our model. 

ATE Group 2-1 Group 3-1 Group 4-1 Group 5-1 

Alcohol Consumption -

absences 

1.0758184 1.8308517 2.9469342 1.050765 

Alcohol Consumption -final 

grade (G3) 

-0.26763344  0.59105015 0.0579866 0.4181542 

 

We could observe that a higher education level compared with level 0 (none) might lead to a higher 

number of absent days, which is against our intuition and might be due to the lack of casual relationships 

or the insufficiency of the data. So is the case for relationships between alcohol consumption on a 

workday and final grades or absences. 

We could also observe that the result of our model is slightly different from the package implemented 

result, even using the same base regressor (XGBRegressor) and the same hyperparameters. This might 
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result from the differences in propensity score selection or the deficiencies of the package as it forces 

the user to choose a control group and compares the control group and multiple treatment groups. The 

latter is inconvenient as it fails to provide users with casual relationships between different treatment 

groups and is problematic as it performs pairwise comparisons similar to the binary case neglecting 

other treatments, which is statistically inaccurate.  

4.2.  Tree-based algorithm 
Consider treatment is mother job (Mjob), and the outcome is whether the teenager wants to take higher 

education(higher). 

 

Figure 4. We can see that blue users (Walc<1.4) react strongly to the treatment, while green users react 

slightly. 

Consider treatment is family educational support (farms up), and outcome is whether the teenager 

wants to take higher education(higher). 

 

Figure 5. We can see that blue users (gout>=3.0, absences>=4.0) react strongly to the 

treatment, while green users react slightly to it. 

5.  Conclusion 

In this essay, we implemented our version of X learner that could deal with multiple treatments. While 

an existing package (CasualML) is statistically flawed as it implements various treatment cases by 

comparing treatments pairwise, neglecting the weight of the other unstudied treatment groups. Our code 

managed to fix that mistake. We tested our model on a real-life data set regarding student alcohol 
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consumption and yielded different ATE. Though insufficient to claim any casual relationships, the 

application proved that our version of X Learner managed to avoid the mistake and estimate ATE 

reflecting all available data. When we consider the impact of treatment on the subjective inclination or 

the causal effect on whether or not you are willing to do something, the uplift tree can perform very 

well. However, the specific implementation cannot estimate multiple treatments' causal effects, and 

there is still much space for improvement. 

Acknowledgment 

Keyu Hong and Wen Chen contributed equally to this work and should be considered co-first authors. 

References 

[1] Altman, Naomi, and Martin Krzywinski. "Points of Significance: Association, correlation, and 

causation." Nature methods 12.10 (2015). 

[2] Yao, Liuyi, et al. "A survey on causal inference." ACM Transactions on Knowledge Discovery 

from Data (TKDD) 15.5 (2021): 1-46. 

[3] Alves, M. F. "Causal inference for the brave and true." (2021). 

[4] Lopez, Michael J., and Roee Gutman. "Estimation of causal effects with multiple treatments: a 

review and new ideas." Statistical Science (2017): 432-454. 

[5] Stuart, Elizabeth A. "Matching methods for causal inference: A review and a look 

forward." Statistical science: a review journal of the Institute of Mathematical Statistics 25.1 

(2010): 1. 

[6] Scotina, Anthony D., and Roee Gutman. "Matching algorithms for causal inference with multiple 

treatments." Statistics in medicine 38.17 (2019): 3139-3167. 

[7] Yao, Liuyi, et al. "A survey on causal inference." ACM Transactions on Knowledge Discovery 

from Data (TKDD) 15.5 (2021): 1-46.  

[8] Wang, Pengyuan, et al. "Robust tree-based causal inference for complex ad effectiveness 

analysis." Proceedings of the Eighth ACM International Conference on Web Search and Data 

Mining. 2015. 

[9] Rosenbaum, Paul R. and Donald B. Rubin. “The central role of the propensity score in 

observational studies for causal effects.” Biometrika 70 (1983): 41-55.   

[10] Student Alcohol Consumption, Kaggle, https://www.kaggle.com/datasets/uciml/student-alcohol-

consumption?select=student-mat.csv. 

[11] Piotr Rzepakowski and Szymon Jaroszewicz. Decision trees for uplift modeling with single and 

multiple treatments. Knowl. Inf. Syst., 32(2):303–327, August 2012. 

[12] Wager S, Athey S. Estimation and Inference of Heterogeneous Treatment Effects using Random 

Forests[J]. Journal of the American Statal Association, 2018, 113(523):1228-1242. 

 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230930

1506


