
Sentiment Classification on tweets —Based on LSTM with 

variants and BERT finetune 

Haoyuan Yang1,4, Wenyu Cai2,5 and Qizheng Liu3,6 
1School of Information Management, Wuhan University, Wuhan, China 
2Computer College, University of Sydney, Sydney, Australia 
3Division of Science and Technology, Beijing Normal University, - Hong Kong 

Baptist University United International College, Guangdong, China 

42018302030118@whu.edu.cn 
5wcai8298@uni.sydney.edu.au 
6q030033033@mail.uic.edu.cn 

Abstract. Covid-19 is a new type of epidemic, we performed sentiment classification tasks on 

Covid-19 tweets using different machine learning models. The famous pre-training models are 

not trained with the text relevant to COVID-19, a new kind of virus appearing at December 2019. 

The twitter posts with such a topic also have not been applied to test the performance of existing 

pre-training models and neural networks well. In our experiment, we used LSTM and 

Transformer to do the sentiment analysis (quinary classification) with a dataset including those 

twitter posts and tried different hyperparameters and models to improve the performance of 

classification. We finally found that the Transformer performs better than LSTM with an extra 

softmax layer in the encoder part, and the bidirectional transformer with 4 hidden layer and 

dropout 0.2 provides the best results among all hyperparameters we have tested. With the 

finetune of BERT,we got the best performance with the accuracy over 85%. 

Keywords: Sentiment Classification, LSTM, BERT. 

1.  Introduction 

Coronavirus disease 2019, known as COVID-19, is a newly emerged epidemic which was spread in 

many countries worldwide since December 2019. There was no vaccine when it appears, and it could 

be easily transmitted by breathing the droplet containing the virus. More importantly, it could cause the 

death by exerting the negative effect on lung and triggering diseases such as pneumonia; bronchitis; and 

ARDS (acute respiratory distress syndrome) [1]. In order to protect people from COVID-19 and prevent 

the transmission, there are many governments asking citizens to wear the mask and keep the certain 

social distance from each other. Some countries, such as China, choose to isolate those who are infected 

and even the whole community of which the infected people living in, while they also curb the 

movement within the country and frequently enforce people to do COVID test. These various 

inconveniences caused by COVID-19 have changed our life to large extent. On the other hand, social 

media is always a place for people to share their different opinions conveniently. Therefore, when there 

is a dataset including tens of thousands of Twitter posts labelled manually with sentiment labels and 

those posts are all about COVID-19, it is worthy to investigate it with sentiment analysis, which is a 
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branch of Natural Language Processing (NLP) [2]. As mentioned before, there was no vaccine for 

COVID-19 because it was new, and same reason applies to deep learning – This topic is never trained 

by any pre-training models, which is good for testing if the learning ability of current models is really 

strong as it seems to be. 

When it comes to NLP, Recurrent Neural Network (RNN) is the most reasonable choice to be the 

base of the model, because RNN, unlike other classes of artificial neural network, could process variable 

number of inputs, which is always the case for processing language. In this part, we have the methods 

from the simple one-hot encoding, which only works well with data that have no relationship, to more 

reasonable methods, such as Bag of Words, Bag of N grams, TD-IDF, and Word2Vec, which make the 

effort to represent the relationship among words. Besides, it is important to pre-process the raw text to 

make ease of machine learning. For example, the “noise” in the raw text, such as “a”; “an”; “the”; “as”; 

etc., could be removed as they don’t have strong meaning and will waste learning time. Besides, 

lowering the case of words, “recovering” the word back to its root form (Stemming), and breaking the 

sentences to small chunks (tokenization) are also the pre-processing that has been commonly used. On 

1997, Long Short-Term Memory was proposed to improve the efficiency of traditional RNN [3]. At the 

same year, Bidirectional RNN was introduced as an extension of RNN, and it allows neural network to 

run forward and backward simultaneously, which can therefore preserve the information from the past 

and future [4]. This helps the machine to “understand” the word from the context. In 2017, Transformer 

was proposed to introduce the attention mechanism and showed even better performance on time and 

quality than existing models at that time [5]. In 2018, Google developed Bidirectional Encoder 

Representations from Transformers (BERT), which is “designed to pre-train deep bidirectional 

representations from unlabeled text by jointly conditioning on both left and right context in all layers. 

As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create 

state-of-the-art models for a wide range of tasks, such as question answering and language inference, 

without substantial task-specific architecture modifications [6].” In 2019, Liu. Y et al. further proposed 

A Robustly Optimized BERT Pretraining Approach (RoBERTa) and released more potential of BERT 

[7].  

LSTM (Long-Short Term Memory) and Transformers are proved to be the recommended models now 

for Natural Language Processing by their performance. With these powerful models, the work done on 

this dataset so far is simply applying LSTM without considering how to further improve the accuracy by 

finetuning hyperparameters or adjusting the structure of models. Furthermore, a concept named “Causal 

Inference” is becoming popular recently, because two people together was granted by half of the Nobel 

Prize in 2021 due to “their methodological contributions to the analysis of causal relationships." This 

concept is mainly about Propensity Score Matching (PSM), which was actually introduced in 1983[8]. It 

measures how much could a factor actually affect the result. By assigning higher weight to those more 

“important” factors, we are curious if the result could be further improved (though relevant experiment 

is not completed yet when writing the report). So, what we do is applying these models to train the 

COVID-19 twitter post with finetuning, with different structures, and brings the concept to causal 

inference to the upstream data processing. Then we validate the result and try to analyze how the change 

of hyperparameters, or models could affect the result on that way from mathematical perspective. We 

have found that although BERT is indeed as powerful as people think, the model still needs to be finetuned 

with certain kind of dataset to result better. But even a very simple finetuning or change to the model 

could boost the performance of the model very well, such as adding a softmax layer. 

The paper is organized as follows: Chapter 2 introduces models and algorithms applying in the 

experiment. Chapter 3 describes the characteristic of the dataset, what we did with it, and the result we 

get. Chapter 4 briefly explains some popular optimizers. Chapter 5 summarized our discovery. 

2.  Preliminaries 

First, using BERT pre-train model as tokenizer. Since most of the recent word embeddings were 

proposed before 2019, we try to use CBOW or SkipGram to train our own word embeddings. Then using 

LSTM and transformer for specific sentiment analysis and compare the experimental results. In the pre-
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processing stage, links and symbols such as %# will be deleted first, and then the text part will be 

processed. During analysis, we'll use a variety of optimizers, different network structures, and change 

the value of dropout. 

2.1.  LSTM (Long Short-term Memory) 

LSTM is a kind of time recurrent neural network, which is designed to solve the problem of long-term 

dependencies of general RNN. The characteristics of the previous long-term slice have been covered 

after multiple stages of calculation. Therefore, with the increase of data time slice, RNN loses the ability 

to learn to connect remote information. 

LSTM consists of sevral LSTM units; the structure of one unit is shown in figure 1:  

 

Figure 1. The structure of a unit in LSTM [9]. 

LSTM uses a gate mechanism to control the circulation and loss of characteristics, so in some degree, 

the long-term dependence can be eased. Its core part calls Cell Stat. That unit calculates how much 

information is retained and how much information is updated. Cell State can be expressed as 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 

ft is the forget gate. It stands for the characteristics of Ct-1 are used to calculate Ct. ft is a vector with 

elements between [0, 1]. Generally, we take sigmoid as the activation function, and its output value is 

within [0, 1].  

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖) 

�̃�𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

�̃�𝑡 is the update value of cell state, obtained by the input data xt and hidden nodes ht-1 through the neural 

network layer. The activation function of Ct usually used tanh. it means input gate, which is used to 

control the features of Ct used to update �̃�𝑡, is also a vector with elements within [0, 1], calculated by 

the input data xt and hidden nodes ht-1 through the activation function sigmoid. 

Finally, calculate the output of the hidden node ht in order to compute the predicted value yt and 

generate the complete input of the next time slice,  

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

ht is calculated by the output gate ot and cell state Ct. 

2.2.  Bi-directional Long Short-term Memory (Bi-LSTM) 

The difference between Bi-LSTM and LSTM is that the hidden layer of Bi-LSTM stores two layers, in 

which a reverse sequence is also took into account. 
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Figure 2. The structure of Bi-LSTM [10]. 

The calculation in forward layer is performed from time 1 to time t, and the output of the forward 

hidden layer at each time is obtained and saved while reverse calculation is performed in the backward 

layer from time t to time 1 to obtain and save the output of the backward hidden layer at each time as 

well. Finally, we combine the output of forward layer and backward layer at each time to get the Bi-

LSTM output. Here are some equations: 

ℎ𝑡 = 𝑓(𝑤1𝑥1 +𝑤2ℎ𝑡−1) 

ℎ𝑡
′ = 𝑓(𝑤3𝑥𝑡 +𝑤5ℎ𝑡−1

′ ) 

ot = g(w4ht +w6ht
′) 

2.3.  Stacked LSTM 

The stacked LSTM consists of sevral LSTM layers. The upper LSTM structure outputs a sequence to 

the next LSTM structure instead of a single value. Adding depth in the LSTM layer is a more effective 

solution than adding memory cells within the LSTM unit. The basic structure of Stacked LSTM is shown 

below. 

 

Figure 3. The structure of a Stacked LSTM [11]. 

3.  Transformer 

After word embedding and positional encoding, all words are converted into vectors. Then each word 

vector is multiplied by three matrices to get three new vectors in order to add more parameters to 

improve the model effect. The three vectors are query vector Q, key vector K and value vector V. For 

each word W, we use its Q to dot product the K of all input words. The result of dot product represents 

the similarity between the two words. Since the values have a large variance, resulting in unstable 

gradient, divide the results with the square root of the key vector’s length to make the gradient more 

stable. Using softmax function to normalize the fraction so that they are all positive and add up to 1. 

Multiply the value vector V by the results after softmax function to keep the values of the target words 

unchanged and cover up the irrelevant words. Add the weighted V vectors to generate the output of the 

self-attention layer of this position (the first word) and calculate the self-attention output of other 

positions in the same way.  
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Figure 4. The structure of a Transformer [12]. 

In order to further refine the self-attention mechanism layer, use different Q/K/V matrices to calculate 

different weight matrices, each weight matrix is used to project input vectors into different representation 

subspaces. Then multiply a weight matrix with a matrix spliced with these matrices and get the output 

of self-attention layer with the same input size. Add the input and output vectors of self-attention layer 

and then normalize the result through the layer norm module and enter the feedforward neural network. 

Then use the add-norm method, and finally get another well-represented sequence structure. 

4.  Methodology 

4.1.  Stochastic Gradient Descent (SGD) 

SGD is a simple but very effective method, which is often used to learn linear classifiers under convex 

loss functions such as logistic regression. Large-scale and sparse machine learning problems often 

encountered in text classification and natural language processing has successfully applied SGD. 

Most of the time SGD is going towards the global minimum, while sometimes going away from the 

minimum, if the sample goes in the wrong direction. Therefore, SGD is noisy. On average, the result of 

SGD ends up going towards the minimum, but sometimes it's going in the wrong direction, since SGD 

never converges and always fluctuate around the minimum value. It is inefficient to process since it only 

trains one sample at a time. 

4.2.  Adaptive Gradient Algorithm (AdaGrad) 

In the standard gradient descent method, each parameter uses the same learning rate in each iteration. 

Beacuse of the difference of convergence rate of each parameter in dimension, the learning rate is set 

according to the convergence of different parameters. 

AdaGrad algorithm is learning from the idea of regularization, the learning rate of each parameter is 

adaptively adjusted in each iteration. In the 𝑡-th iteration, the cumulative value of the gradient square of 

each parameter is calculated first [13]. 
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𝐺𝑡 =∑𝑔𝜏⨀𝑔𝜏

𝑡

𝜏=1

 

The parameter update difference of AdaGrad algorithm is 

∆𝜃𝑡 = −
𝛼

√𝐺𝑡 + 𝜖
⊙ 𝑔𝑡 

While α is the learning rate, and ε is a very small constant set to maintain numerical stability, usually 

from e-10 to e-7. 

In AdaGrad algorithm, if the accumulation of partial derivative of a parameter is large, its learning 

rate is relatively small. On the contrary, if its partial derivative accumulation is small, its learning rate is 

relatively large. However, as the number of iteration times increases, the learning rate gradually 

decreases. 

The disadvantage of AdaGrad algorithm is that if the optimal point is still not found after a certain 

number of iterations, since the learning rate at this time is very small, it is difficult to continue to find 

the optimal advantage. 

4.3.  AdaDelta 

AdaDelta algorithm (Zeiler, 2012) is an improvement of AdaGrad algorithm. Adadelta algorithm adjusts 

the learning rate by exponentially decaying the moving average of the square of the gradient. In addition, 

Adadelta algorithm also introduces the exponential decay moving average of parameter update 

difference Δθ of each time [14]. 

During the 𝑡 th iteration, the square of the moving average of exponential attenuation weight of the 

parameter updates difference Δθ is 

∆𝑋𝑡−1
2 = 𝛽∆𝑋𝑡−2

2 + (1 − 𝛽1)∆𝜃𝑡−1 ⊙∆𝜃𝑡−1 

β1 is the attenuation rate. Since Δθt is unknown, it could only be calculated at ΔXt-1. 

The parameter update difference of AdaDelta algorithm is 

∆𝜃𝑡 = −
√∆𝑋𝑡−1

2 + 𝜖

√𝐺𝑡 + 𝜖
 

ΔX2
t-1 is the exponential decay moving average of parameter update difference Δθ. 

4.4.  Adaptive Moment Estimation Algorithm (Adam) 

The Adam algorithm uses momentum as the parameter update direction and adaptively adjust the 

learning rate [15]. 

The Adam algorithm calculate the exponential weighted average of the gradient g2
t square and the 

exponential weighted average of the gradient gt. 

𝑀𝑡 = 𝛽1𝑀𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝐺𝑡 = 𝛽2𝐺𝑡−1 + (1 − 𝛽2)𝑔𝑡⨀𝑔𝑡 

Mt is the mean of gradient, and Gt is the variance without subtracting the mean. Usually β1 = 0.9, β2 

= 0.99. 

If M0 = 0 and G0 = 0, then the value of Mt and Gt will be smaller than the true mean and variance at 

the beginning of the iteration, especially when β1 and β2 are all approach to 1. Therefore, it’s necessary 

to revise the deviation. 

�̂�𝑡 =
𝑀𝑡

1 − 𝛽1
𝑡 
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𝐺𝑡 =
𝐺𝑡

1 − 𝛽2
𝑡 

The parameter update difference of Adam algorithm is 

𝛥𝜃𝑡 = −
𝛼

√�̂�𝑡 + 𝜖
�̂�𝑡 

The learning rate α = 0.001, and it could also be attenuated, for example,  

𝑎𝑡 =
𝑎0

√𝑡
 

4.5.  AdamW 

In short, AdamW is the Adam optimizer plus L2 regularization to restrict the parameter value from being 

too large [16]. Generally, when we add L2 regularization straightly to the loss function, the loss function 

will be 

𝐿𝑙2(𝜃) = 𝐿(𝜃) +
1

2
𝛾‖𝜃‖2 

Therefore, when calculating gt,  

𝑔𝑡 ← 𝛻𝑓𝑡(𝜃𝑡−1) + 𝜆𝜃𝑡−1 

For AdamW, the L2 regularization adds on the calculation of θt  

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 (
𝛼�̂�𝑡

√𝑣𝑡 + 𝜖
+ 𝜆𝜃𝑡−1) 

5.  Experiment 

5.1.  LSTM 

Before we apply different models in our dataset, we checked the tweets, it contains some tags, links or 

@ signs. Those text can’t contribute to our sentiment classification tasks, so during pre-process, we 

removed the useless information. In the manual tagged dataset, there are five sentiment classifications. 

We counted the distribution of the classifications. Fortunately, both in the training and the test dataset, 

the numbers of quinary classifications are well balanced. 

After the pre-process, we used the typical LSTM model with no changes, which didn’t perform good 

enough, we used pre-trained tokenizer RoBERTa. RoBERTa is a model trained from a large corpus. We 

counted the length of the tweets. The longest one contains 184 tokens. So, when the RoBERTa tokenizer 

encode the text, the max length attribute is limited in 200. Although LSTM is a pretty wise solution in 

NLP, for the covid tweets dataset, the accuracy can’t satisfy anyone. The exact probability is only 59.8%. 

The LSTM model can’t fit the dataset very good, so we looked through some variants of LSTM model. 

The most popular operations are Stacked-LSTM and Bidirectional LSTM. Will stacked structure help 

us improve the accuracy? Which depth is the best choice? In the chart below. We established the result 

of our experiment. The accuracy of the test dataset went up to 70.7% when we stacked another LSTM 

layer. It also helps in the next two additional LSTM layers, however the accuracy growth stopped in 

depth 5. It’s difficult to say whether 4 or 5 layers of LSTM is better. Considering the simple model will 

have less troubles. We believe that 4 layers of LSTM is good enough and proceeded our experiment.  
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Table 1. Accuracy of stacked LSTM adjustment. 

dataset training testing 

depth epoch2 epoch4 epoch6 epoch8 epoch2 epoch4 epoch6 epoch8 

1 0.74 0.975 0.977 0.99 0.578 0.573 0.583 0.598 

2 0.733 0.927 0.972 0.98 0.705 0.693 0.707 0.707 

3 0.734 0.895 0.951 0.974 0.724 0.733 0.746 0.749 

4 0.737 0.893 0.944 0.969 0.709 0.736 0.757 0.769 

5 0.727 0.888 0.944 0.964 0.71 0.755 0.763 0.769 

6 0.717 0.885 0.936 0.962 0.703 0.733 0.758 0.750 

Another intuitive way to improve accuracy is that we can combine the positive sequence and the 

negative sequence to capture the whole context. In that way, the depth of the network doesn’t change 

but the parameters doubled. We changed the network’s depth with both LSTM and Bi-LSTM structures. 

The result is that with the Bi-LSTM structure, the accuracy of depth 3 didn’t grow, but in depth 4 and 

depth 5, the accuracy grows a lot. So maybe that’s also a good idea to combine the sequences. But 

compared with the stacked model. The cost of bidirectional structure is also great, the parameters 

doubled, but the accuracy only grew 2 or 3 %. The stacking method adding another layer with one third 

or a quarter additional parameter can have the same effect. 

Table 2. Accuracy of Bi-LSTM adjustment. 

dataset training testing 

depth epoch2 epoch4 epoch6 epoch8 epoch2 epoch4 epoch6 epoch8 

3 0.731 0.889 0.944 0.968 0.718 0.733 0.739 0.748 

3 bi 0.734 0.895 0.951 0.974 0.724 0.733 0.746 0.749 

4 0.716 0.878 0.933 0.959 0.701 0.736 0.749 0.751 

4bi 0.737 0.893 0.944 0.969 0.709 0.736 0.757 0.769 

5 0.695 0.87 0.93 0.955 0.697 0.74 0.739 0.747 

5bi 0.727 0.888 0.944 0.964 0.71 0.755 0.763 0.769 

The SGD method always have the worst behavior, since it never converges and always fluctuate 

around the minimum value. From the analysis of the table, on average, the results of SGD go towards 

the minimum. AdaGrad and AdaDelta perform better in the test dataset, while the results of AdaDelta 

exceed 50%. The reason why AdaDelta algorithm has a better result than AdaGrad is probably because 

it adjusts the learning rate by exponentially decaying the moving average of the gradient square, while 

the learning rate of AdaGrad is fixed. It could be observed that Adam and AdamW with its variant have 

much better results among these optimizers, while with the increase of the epoch, AdamW becomes a 

better choice. AdamW is a combination of Adam and L2 regularization, and it has the best results with 

the rising of epoch. We proceeded our experiment with this optimizer. 

Table 3. Accuracy of optimizer adjustment. 

dataset training testing 

optimizer epoch2 epoch4 epoch6 epoch8 epoch2 epoch4 epoch6 epoch8 

Adam 0.819 0.92 0.961 0.978 0.744 0.758 0.758 0.758 

AdamW 0.737 0.893 0.944 0.969 0.709 0.736 0.757 0.769 

SGD 0.287 0.31 0.309 0.311 0.291 0.307 0.306 0.306 

AdaGrad 0.296 0.424 0.597 0.718 0.286 0.381 0.51 0.611 

AdaDelta 0.556 0.755 0.852 0.914 0.59 0.675 0.683 0.678 
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Dropout is also a key method to the robust the model. When we back propagate the gradients, 

randomly stop the propagate process and the method will always strength our network. The dropout rate 

was also test in the network. The result is that 0.2 and 0.3 are both pretty good, that value is always used 

in similar research avoiding overfitting. 

Table 4. Accuracy of dropout adjustment. 

dataset training testing 

dropout epoch2 epoch4 epoch6 epoch8 epoch2 epoch4 epoch6 epoch8 

0.2 0.737 0.893 0.944 0.969 0.709 0.736 0.757 0.769 

0.3 0.728 0.885 0.942 0.961 0.709 0.75 0.766 0.763 

0.4 0.73 0.879 0.934 0.961 0.711 0.736 0.746 0.756 

0.5 0.718 0.871 0.93 0.955 0.712 0.748 0.753 0.747 

6.  Transformer 

For the NLP problems, transformer model is a newly proposed model. It consists of two main parts: the 

encoder part and the decoder part. Transformer uses three matrices to capture attention, so the relation 

between different parts of input corpus can be calculated and stored in a more mathematical format. 

Since transformer is a sequence to sequence (Seq2Seq) model, to use the complex model for sentiment 

classification, we only need to focus on the encoder part. Firstly, we used the pre-trained model “BERT-

base-uncased” from Huggingface. The function BERTForSequenceClassification add a softmax layer 

for the classification tasks, so we can apply the model with finetuned parameters for the sentiment 

classification. Only one softmax layer is good enough. Compared with the LSTM models, which we 

have applied a lot of different structures and different optimizers and different parameters, the 

transformer model for classification only took 2 epochs to reach a stable and excellent accuracy—74.7%.  

Only one softmax layer can lead to that outcome. Another finetune method is to train the training 

dataset on the pre-trained model to get our own model. So, the final classification model will consider 

the word distribution of our covid-19 tweets dataset. In our finetune experiment, we added [SEP] token 

at the end of all sentences and added [CLS] token at the beginning of all sentences. After that, we counted 

the max length of tokens. Like some tests reported, the MAX_LEN attribute affects the training speed 

significantly. For the training dataset, the max length of tokens is 226, that means we will pad or truncate 

the sentences to the same length. The base model is also “BERT-base-uncased”, a structure with 12-

layer, 768-hidden, 12-heads, 110M parameters. The batch size was 32, learning rate was 2e-5, the 

number of epochs is 6, and the optimizer was AdamW, which always perform the best. Finally, we 

started the training process, we loaded the data into GPU and before each iteration, we reset the gradients. 

Within each epoch, the forward propagation and back propagation updated the parameters through the 

optimizer. Then we through the forward propagation process on the test dataset evaluated the loss and 

accuracy. 

The accuracy of the first epoch is 80%, obviously a better outcome. During the next 3 epochs, the 

loss decreased, and the accuracy increased. But in the fifth and the sixth epoch, the loss and the accuracy 

on the test dataset stopped changing. The highest accuracy reached 85%, an excellent outcome. Finally, 

we got a finetuned model, it’s very time-consuming to train the big model, but the outcome is the best. 

Table 5. Loss and accuracy of transformer finetune. 

 epoch1 epoch2 epoch3 epoch4 epoch5 epoch6 

Traning loss 0.81 0.42 0.29 0.21 0.15 0.13 

Testing loss 0.55 0.52 0.45 0.45 0.45 0.45 

Testing accuracy 0.80 0.81 0.84 0.85 0.85 0.85 
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7.  Conclusion 

In our experiments, we finished the sentiment classification task for the covid-19 tweet dataset after data 

preprocessing. We mainly used the LSTM model with its variants and the transformer model. For this 

quinary classification task, the most basic single-layer unidirectional LSTM performed poorly on the 

dataset, so we considered the stacked LSTM model and the bidirectional LSTM model and the derived 

Transformer model. We compared the advantages and disadvantages between different models and 

adjusted our optimizer and adjusted the dropout values to prevent overfitting. 

In the Transformer model, we first used a simple pre-training model "BERT-base-uncased" and added 

a softmax layer after the encoder part for the classification task. Although only a small change was made 

to the original model, we finally got a pretty good outcome. After that, we also finetuned the training 

data set for the model. In the original training data set of BERT, the training data corpus was very large, 

learning information from news media, tweets, and so on. We added training samples to the original 

model and finetuned it by adding the Twitter dataset and made simple modifications to the parameters 

of the original model. The accuracy on the test set reached 80% after only one epoch, and after training 

four epochs, the model stabilized, and the results were obtained with a final accuracy of 85%. 

The impact of model selection on the outcome is significant when the strategy of model tuning is 

more reasonable, and small adjustments within the better interval of parameters do not significantly 

improve the results of the model. Although the existing transformer model has performed well, we note 

that different tokens have the same weight for the sentiment classification task, and the model does not 

focus too much on words with significant sentiment polarity such as terrible and excellent. The later 

expriment can improve the performance results of the whole model from the perspective of causal 

inference, such as using PSM to optimize the upstream task. And counterfactual inference of the 

sentiment polarity of each word by methods such as KNN and assigning its weight in the sentiment 

classification task accordingly would be a better boost. So far, no such study has been carried out due to 

time constraints, but in subsequent studies, we will consider causality and also continue to target 

improvements in models such as LSTM with added attention mechanisms for implementation. 
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